M.B. Lava; Uday M. Muddapur; B. Nagaraj
Abstract
Biosynthesis of gold nanoparticles is one among the best and cheap economical viable process, which is environmental friendly. The purpose of this study is to synthesis the gold nanoparticles using Lobelia nicotianifolia leaf extract and to investigate its biological activities. The synthesized gold ...
Read More
Biosynthesis of gold nanoparticles is one among the best and cheap economical viable process, which is environmental friendly. The purpose of this study is to synthesis the gold nanoparticles using Lobelia nicotianifolia leaf extract and to investigate its biological activities. The synthesized gold nanoparticles were characterized by UV-vis spectroscopy, TEM, SAED, FTIR and XRD, the nanoparticles produced at maximum absorbance 532 nm. The Characterization study proved that the size and shape of AuNPs were spherical in shape, with an average size of 80 nm. Synthesized AuNPs were evaluated for various in-vitro biological studies.

Anamika Mubayi; Sanjukta Chatterji; Prashant K. Rai; Geeta Watal
Abstract
Nowadays, nanotechnology has grown to be an important research field in all areas including medicinal chemistry. The size, orientation and physical properties of nanoparticles have reportedly shown to change the performance of any material. For several years, scientists have constantly explored different ...
Read More
Nowadays, nanotechnology has grown to be an important research field in all areas including medicinal chemistry. The size, orientation and physical properties of nanoparticles have reportedly shown to change the performance of any material. For several years, scientists have constantly explored different synthetic methods to synthesize nanoparticles. On the contrary, the green method of synthesis of nanoparticles is easy, efficient, and eco-friendly in comparison to chemical-mediated or microbe-mediated synthesis. The chemical synthesis involves toxic solvents, high pressure, energy and high temperature conversion and microbe involved synthesis is not feasible industrially due to its lab maintenance. Since, green synthesis is the best option to opt for the synthesis of nanoparticles, therefore the nanoparticles were synthesized by using aqueous extract of Moringa oleifera and metal ions (such as silver). Silver was of particular interest due to its distinctive physical and chemical properties. M. oleifera leaf extract was selected as it is of high medicinal value and it does not require any sample preparation and hence is cost-effective. The fixed ratio of plant extract and silver ions were mixed and kept at room temperature for reduction. The color change from yellow to reddish brown confirmed the formation of nanoparticles. Further, the synthesized nanoparticles were characterized by UV, EPMA, XRD and FTIR data. The antimicrobial activity of synthesized nanoparticle has also been examined in gram positive and gram negative bacteria and encouraging results are in hand.