Zhihao Li; Jiapeng Su; Anjun Jerry Jin
Abstract
This article presents a perspective of the several modern alternative energy generation technologies. Moreover, authors facilitate the case study of the application of an emerging energy blockchain (EBC) technology and the Published Energy Sources (PES). A methodical analysis utilizes the EBC input parameters ...
Read More
This article presents a perspective of the several modern alternative energy generation technologies. Moreover, authors facilitate the case study of the application of an emerging energy blockchain (EBC) technology and the Published Energy Sources (PES). A methodical analysis utilizes the EBC input parameters as follows: power generation such as multi-energy complementarity, energy storage, and the smart grid power that has a smart meter and/or control within the EBC system. On the other hand, the EBC technology has several variables as output that includes the following: (1) power consumption focusing on renewable energies; (2) technology enabling financial saving and earning method; (3) peer to peer energy transaction according to the EBC platform.

Sandra Afflerbach; Wolfgang Krumm; Reinhard Trettin
Abstract
Within the past decade, ecological issues accompanying energy generation and utilization have gained increasing interest, thereby creating a need for new scientific and technical solutions on the path to a sustainable energy future. Besides switching the basis of the electricity sector from fossil fuels ...
Read More
Within the past decade, ecological issues accompanying energy generation and utilization have gained increasing interest, thereby creating a need for new scientific and technical solutions on the path to a sustainable energy future. Besides switching the basis of the electricity sector from fossil fuels to renewables, also the heat sector is to be transformed. A major obstacle accompanying this energy transition is the temporal intermittency of power generation from renewables. However, these hurdles can be overcome by design of systems for energy storage and conversion. Within the growing field of solutions for thermal storage, thermochemical systems move into the focus as they provide comparably highest storage densities but at the same time also options for heat conversion. This concise review summarizes the background and the scope of possible applications discussed in recent literature. A focus is set on the identification and modification of new reaction systems, criteria for material selection are presented and different classes of reaction systems are discussed with regard to their operating temperature ranges. It is concluded, that an evaluation of possible use cases with precise definition of their respective thermal boundary conditions would be of high value for a purposeful continuation of future screening approaches.

Zhihao Li; Kuan W. A. Chee; Zhenhai Yang; Jiapeng Su; Jiapei Zhao; Anjun J. Jin
Abstract
It is extremely important to achieve maximal efficiency of an alternative energy system, as such; it provides the maximum power output. In order to be maximally efficient in utilizing the available energy, researchers will study several key factors that can enable the best sustainable energy in terms ...
Read More
It is extremely important to achieve maximal efficiency of an alternative energy system, as such; it provides the maximum power output. In order to be maximally efficient in utilizing the available energy, researchers will study several key factors that can enable the best sustainable energy in terms of utilizing alternative energies. They have studied several methods to design the best-distributed energy system which implements the alternative energies, energy storage, and the advanced materials for the alternative energy generation. In terms of the solar photovoltaic technologies, e.g., researchers have studied the perovskite solar cells. Perovskite solar cells are highly favored for their wide, tunable band gap and solution process ability. Stellar rise of the perovskite solar cells application partly attributed to factors like high energy efficiency. These factors include innovative design such as the tandem structure, tunable band gap, and encapsulation for each layer. At present, their single-junction efficiencies are comparable to those of multi-crystalline silicon, cadmium telluride and copper indium gallium selenide. Finally, researchers have studied an energy storage system at a capacity of 3MegaWattHour. This system can enable a maximum energy output that entails a system including such key factors as the alternative energy generation, energy storage, and an advantageous distributed energy system.

Chien-I Li; Akio Oikawa; Fumihiko Kosaka; Junichiro Otomo
Abstract
Direct electrochemical synthesis of ammonia was performed using proton-conducting solid oxide fuel cells. In this study, we investigated the effect of electrode potential on the reaction kinetics of ammonia formation with Fe- and Ru-based catalysts in detail. The cell configuration was Pt|BaCe0.9Y0.1O3 ...
Read More
Direct electrochemical synthesis of ammonia was performed using proton-conducting solid oxide fuel cells. In this study, we investigated the effect of electrode potential on the reaction kinetics of ammonia formation with Fe- and Ru-based catalysts in detail. The cell configuration was Pt|BaCe0.9Y0.1O3 (BCY)|K-modified Fe or Ru-BCY. The ammonia formation rate of K-Ru was higher than that of K-Fe at the rest potential. However, the ammonia formation rate significantly increased by cathodic polarization for the Fe catalyst, and it showed a linear increase for the Ru catalyst, i.e., the ammonia formation rate for K-Fe significantly increased from the rest potential by several hundred times to -1.2V at 700 o C, but K-Ru showed only a five times increase. The results suggest that the addition of K into Fe-BCY and cathodic polarization can improve the ammonia formation rate because of the promotion of bond dissociation of the N molecule on the Fe catalyst. The present work provides a hint for efficient ammonia formation and contribute to further development of ammonia electrochemical synthesis with proton-conducting solid oxide fuel cells. Copyright © VBRI Press.

Eliana M. F. Vieira; Joao F. Ribeiro; Rui Sousa; Anabela G. Rolo; Manuela M. Silva; Luis M. Goncalves
Abstract
Design and fabrication of reliable materials with high capacity, cycling stability and good adhesion properties for flexible microbatteries remains a challenge. A 2 µm thick flexible solid-state Ge-LiCoO2 battery was fabricated and the structure, composition, thermal, optical, electrical, ...
Read More
Design and fabrication of reliable materials with high capacity, cycling stability and good adhesion properties for flexible microbatteries remains a challenge. A 2 µm thick flexible solid-state Ge-LiCoO2 battery was fabricated and the structure, composition, thermal, optical, electrical, and electrochemical properties of the materials that determine and influence its electrochemical potential were investigated. RF-sputtered lithium cobalt oxide (LiCoO2) cathode and lithium phosphorus oxynitride (LiPON) electrolyte films were fabricated at 120 W and 100 W of power, respectively. A ~ 300 nm thick Ge anode was deposited by e-beam. The full-battery was fabricated using conventional and low-cost PVD processes. X-ray diffraction (XRD) and Raman spectroscopy confirms the hexagonal R͞3m phase of annealed LiCoO2. Differential scanning calorimetry (DSC) technique was applied to investigate the thermal behaviour of the LiPON film with a moderate electrical resistivity of 10 8 Ωcm and high optical transmission (> 75%) in the UV-Visible range. Bending experiments were also performed to evaluate thin-films adhesion and stability. Scanning electron microscopy (SEM) technique was used to evaluate the morphology of films surface and the layered structure of the full-battery. This detailed experimental study allows us to understand the discharge behavior of the fabricated Li-ion battery.