Gounder Thangamani J.; Kalim Deshmukh; Kishor Kumar Sadasivuni; K. Chidambaram; M. Basheer Ahamed; Deepalekshmi Ponnamma; Mariam Al-Ali AlMaadeed; S. K. Khadheer Pasha
Abstract
Graphene and carbon nanotubes (CNTs) based sensors have been extensively studied because of their applications in the detection of various chemicals and biomolecules. From an application point of view, high sensitivity and selectivity is a promising tool for fast detection of gas leakage and early diagnosis ...
Read More
Graphene and carbon nanotubes (CNTs) based sensors have been extensively studied because of their applications in the detection of various chemicals and biomolecules. From an application point of view, high sensitivity and selectivity is a promising tool for fast detection of gas leakage and early diagnosis of diseases for health care. In the present review article, we provide a comprehensive overview on the recent advances in the development of graphene and CNT based electrochemical biosensors and gas sensors. From the future point of view, special attention is paid to the synthesis techniques for high-performance biosensors and gas sensors. This article focuses on detecting mechanism for various volatile organic compounds (VOCs) gas sensing behavior of the graphene and CNT based sensors. A comparative study of the sensing behavior of pure metal oxide nanoparticles as well as their hybrids with graphene and CNTs has been reported.
M. K. Mohanapriya; Kalim Deshmukh; M. Basheer Ahamed; K. Chidambaram; S. K. Khadheer Pasha
Abstract
Zeolite 4A nanoparticles were incorporated into Poly (3, 4 - ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) and Polyvinyl alcohol (PVA) blend matrix to prepare PEDOT: PSS/PVA/Zeolite 4A nanocomposites using solution casting technique. The structure and morphology of nanocomposites were ...
Read More
Zeolite 4A nanoparticles were incorporated into Poly (3, 4 - ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) and Polyvinyl alcohol (PVA) blend matrix to prepare PEDOT: PSS/PVA/Zeolite 4A nanocomposites using solution casting technique. The structure and morphology of nanocomposites were examined using Fourier transform infrared spectroscopy, X-ray diffraction, UV-Vis spectroscopy and Scanning electron microscopy. The mechanical and dielectric properties of nanocomposites were also evaluated. The FTIR and XRD results indicate the strong interaction between the Zeolite 4A nanoparticles and the polymer matrix. The SEM micrographs show the homogeneous dispersion of Zeolite 4A into the polymer matrix. The nanocomposite exhibits a high dielectric constant and low dielectric loss, which could be due to proper dispersion and good interaction between Zeolite 4 A and polymer matrix. Thus, based on the results obtained it can be concluded that PEDOT: PSS/PVA/Zeolite 4A nanocomposites can be used as a flexible dielectric material for embedded capacitor applications.