Ranjana S. Varma; D.C. Kothari; A.K. Mallik; A. Bhatnagar; D. Kanjilal; S. Santra; R.G. Thomas; R. Tewari; S. Neogy; G.K. Dey
Abstract
Silver ion exchanges on silicate glasses were carried out at different temperatures 320 °C, 400 °C, and 500 °C for 60 min. The exchanged glasses were either annealed at 500 °C for 60 min or swift heavy ion (SHI) irradiated using 120 MeV Ag 9+ ions at a fluence of 5 x 10 12 ions/cm 2 . ...
Read More
Silver ion exchanges on silicate glasses were carried out at different temperatures 320 °C, 400 °C, and 500 °C for 60 min. The exchanged glasses were either annealed at 500 °C for 60 min or swift heavy ion (SHI) irradiated using 120 MeV Ag 9+ ions at a fluence of 5 x 10 12 ions/cm 2 . Silver nanoparticles were formed in the samples ion exchanged at 500 °C without any post-exchange treatments. Post-exchange annealing treatment resulted in silver nanoparticle formation for samples ion exchanged at temperature of 320 °C and 400 °C. Whereas post irradiation treatment for ion exchanged sample at 320 °C resulted in Ag4 nanocluster formation. After post-irradiation, the density of Ag nanoparticles increases for the sample ion exchanged at temperature of 500 °C. RBS was used to obtain silver depth profiles in the ion exchanged samples. Near surface accumulation of Ag atoms is observed in the RBS spectra for the samples prepared at high ion exchange temperature of 500 °C or SHI irradiated samples, in which Ag nanoparticle formation was also observed. UV-vis absorption spectroscopy and Transmission Electron Microscopy (TEM) were used to obtain signatures of nano-particles and to estimate their size. The ion exchanged glasses without nanoparticles were characterized for their possible use in multimode planar waveguides. The post-exchange treated glasses lost their waveguide property, but exhibited nonlinear optical property indicating their potential use for optical switching. Open aperture z-scan measurements for the sample prepared at high ion exchange temperature of 500 °C shows optical limiting behavior, whereas the samples prepared at low ion exchange temperature followed by annealing or irradiation show saturation behavior.
Ranjana S. Varma; D.C. Kothari; S. Santra; R.G. Thomas; R. Tewari; S. Neogy; C.S. Suchand Sandeep; Reji Philip; D. Kanjilal
Abstract
In the present work, we have used swift heavy ions (SHI) irradiation and post irradiation annealing to synthesize Ag nanoparticles in fused silica. Fused silica samples deposited with 15 nm of Ag film were irradiated using SHI beam of 120 MeV Ag 9+ ions at different fluences and post irradiation annealing ...
Read More
In the present work, we have used swift heavy ions (SHI) irradiation and post irradiation annealing to synthesize Ag nanoparticles in fused silica. Fused silica samples deposited with 15 nm of Ag film were irradiated using SHI beam of 120 MeV Ag 9+ ions at different fluences and post irradiation annealing was done at 500 °C in air for 30 min. The samples were characterized using UV-vis absorption spectroscopy, Rutherford Backscattering Spectrometry (RBS), GAXRD, Transmission Electron Microscopy (TEM), and open aperture z-scan measurements. The signature of Ag nanoparticles was observed in optical absorption spectra and the average size of the Ag nanoparticles was estimated using Mie’s theory. The size of the nanoparticles (~3 nm) was also confirmed from the GAXRD and TEM measurements. RBS results for Ag/SiO2 irradiated with the fluence of 5 x10 13 ions/cm 2 shows the decrease in slope at the interface of the Ag profile, indicating a partial mixing at a fluence of 5 x10 13 ions/cm 2 . Open aperture z-scan measurement of Ag/SiO2 SHI irradiated sample after annealing shows a saturation behavior, indicating that the sample is optically non-linear. The sample shows saturation behavior but does not show optical limiting behavior, which indicates that the size and number density of nanoparticles are low. The ability to control the particle size using ion beam technique as a function of fluence and observed nonlinearity results provide concrete evidence that Ag nano composite glasses can be used in nonlinear and optical limiting application.