Kumar Digvijay Satapathy; Kalim Deshmukh; M. Basheer Ahamed; Kishor Kumar Sadasivuni; Deepalekshmi Ponnamma; S. K. Khadheer Pasha; Mariam Al-Ali AlMaadeed; Jamil Ahmad
Abstract
Herein, we report the synthesis of poly (vinylidene fluoride) (PVDF) based novel nanocomposites reinforced with graphene nanoplatelets (GNP) and vanadium pentoxide (V2O5) as nanofillers. The PVDF/V2O5/GNP nanocomposite films were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray ...
Read More
Herein, we report the synthesis of poly (vinylidene fluoride) (PVDF) based novel nanocomposites reinforced with graphene nanoplatelets (GNP) and vanadium pentoxide (V2O5) as nanofillers. The PVDF/V2O5/GNP nanocomposite films were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), polarized optical microscopy (POM) and scanning electron microscopy (SEM). The electrical properties of nanocomposites were investigated to ascertain the synergistic effect of fillers on the quality factor (Q-factor) of nanocomposites. The FTIR and XRD results infer good interaction between PVDF and V2O5 and the good dispersion of nanofillers in the PVDF matrix. The TGA results revealed that the thermal stability of PVDF/V2O5/GNP nanocomposite has improved at higher loading of nanofillers due to the good interaction between the nanofillers and the polymer matrix. The electrical analysis of nanocomposite films demonstrates high Q-factor value (1099.04) at 4.7 wt % V2O5 and 0.3 wt % GNP loading. With further increase in GNP loading to 1 wt %, the Q-factor becomes lower (356.52) which could be due to the enhanced conductivity of the samples. The significant enhancement in the value of Q-factor shows that the nanocomposites can be used as a potential candidate for high-Q capacitor applications.
Mayank Pandey; Girish M. Joshi; Kalim Deshmukh; Jamil Ahmad
Abstract
Polyvinyl alcohol (PVA) and Polyvinyl Pyrrolidone (PVP) based polymer electrolytes for different loading wt% of CdCl2 were prepared by solution casting. The structural complexation was confirmed and interlayer spacing (d) was evaluated by using X-ray diffraction (XRD) study. The chemical bonding between ...
Read More
Polyvinyl alcohol (PVA) and Polyvinyl Pyrrolidone (PVP) based polymer electrolytes for different loading wt% of CdCl2 were prepared by solution casting. The structural complexation was confirmed and interlayer spacing (d) was evaluated by using X-ray diffraction (XRD) study. The chemical bonding between polymer and salt was identified by using Fourier transform infrared spectroscopy (FTIR) technique. The FTIR peak at 3402.43 cm -1 in addition of PVP in PVA/CdCl2 composite demonstrates the grafting between two polymers. The presence of ionic bright channels and variation in morphology for different loading wt% of CdCl2 was confirmed by scanning electron microscope (SEM) and was also verified by Atomic force microscopy (AFM) micrographs. The analysis of impedance spectroscopy represented by semicircular pattern is driven by conduction mechanism and correlated with electrical conductivity. The enhanced AC conductivity of polymer electrolyte is directly proportional to frequency (50Hz-1MHz). The maximum value of DC conductivity 1.65x10 -5 S/m evaluated from Arrhenius plots and attribute to high mobility of free charges at higher temperature. The evaluated results of structural, morphological and electrical properties of present composites make the present research good for electrochemical devices.