Sini Kuriakose; Biswarup Satpati; Satyabrata Mohapatra
Abstract
ZnO nanostructures were synthesized by a facile wet chemical method using water, ethanol and propanol as solvents. X-ray diffraction, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) have been used to study the structural properties of the synthesized ZnO ...
Read More
ZnO nanostructures were synthesized by a facile wet chemical method using water, ethanol and propanol as solvents. X-ray diffraction, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) have been used to study the structural properties of the synthesized ZnO nanostructures, while their optical properties have been studied using UV-visible absorption spectroscopy and Raman spectroscopy. The photocatalytic activities of the as-synthesized ZnO nanostructures were evaluated by monitoring sunlight driven photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dyes in water and it was observed that ZnO nanostructures prepared using propanol as a solvent exhibit highly enhanced photocatalytic activity as compared to those prepared using other solvents. The mechanism underlying the photocatalytic activity of ZnO nanostructures towards photocatalytic degradation of dyes is proposed. We attribute the highly enhanced photocatalytic activity of ZnO nanostructures prepared in propanol to the high surface area of nanosheets-like structures formed, which lead to enhanced adsorption of dye molecules resulting in efficient photocatalytic degradation of dyes upon sunlight irradiation.
Sini Kuriakose; Biswarup Satpati; Satyabrata Mohapatra
Abstract
Highly photocatalytically active nanodisks of ZnO and Co doped ZnO were synthesized by a facile wet chemical method. The structural, optical and photocatalytic properties of ZnO and Co doped ZnO nanodisks were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic ...
Read More
Highly photocatalytically active nanodisks of ZnO and Co doped ZnO were synthesized by a facile wet chemical method. The structural, optical and photocatalytic properties of ZnO and Co doped ZnO nanodisks were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and UV-visible absorption spectroscopy. FESEM, AFM and TEM studies revealed the presence of ZnO nanodisks. Sun light driven degradation of aqueous methyl orange (MO) dye was used for evaluating the photocatalytic activity of as-synthesized ZnO and Co doped ZnO nanodisks. Co doped ZnO nanodisks showed very high photocatalytic efficiency and lead to almost complete degradation of MO dye in just 8 minutes. A tentative mechanism of the photocatalytic degradation of MO by Co doped ZnO nanodisks is proposed. We attribute the enhanced photocatalytic activity of Co doped ZnO nanodisks to their high specific surface area and efficient charge carrier separation due Co doping, which improves suppression of recombination of photogenerated electrons and holes. Development of sun light active highly efficient and stable photocatalysts is very promising for environmental remediation leading to safe and clean water.