Dinesh Pathak; Tomas Wagner; Tham Adhikari; J.M. Nunzi
Abstract
For the first time Inverted ternary bulk hetrojunction hybrid photovoltaic device based on AgInSe2 – polymer blend as absorber and PEDOT:PSS as hole transport layer was fabricated and characterized. Blends of MDMOPVV.PCBM.AIS (MDMOPVV-Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene], ...
Read More
For the first time Inverted ternary bulk hetrojunction hybrid photovoltaic device based on AgInSe2 – polymer blend as absorber and PEDOT:PSS as hole transport layer was fabricated and characterized. Blends of MDMOPVV.PCBM.AIS (MDMOPVV-Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene], PCBM-(Phenyl-C61-butyric acid methyl ester), AIS-AgInSe2) used as absorber layer. Bulk hetrojuction hybrid Photovoltaic device Ag/PEDOT:PSS /MDPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system as inverted cell configuration. The best performance and photovoltaic parameters, were obtained using an open-circuit voltage of about Voc 0.24 V, a photocurrent of Jsc 0.56 JSC (mA/cm 2 ), 28.4 (%) FF and an efficiency of 0.038 percent with a white light illumination intensity of 100 mW/cm 2 . Further improvement efforts for better performance are on the way. Successful fabrication and working of this inverted device suggest further optimizations like spinning rate/thickness/solvents/depositions rates for active layers and proceeding further in light of knowledge of recombination studies and molecular modeling of AIS nanopowder with this organic system for better performance of a bulk hetrojunction hybrid solar cell.
Praveen Kumar; Amritpal Singh; Dinesh Pathak; Ludek Hromadko; Tomas Wagner
Abstract
In the present work, we report the structural and optical properties of sol-gel synthesized Zn0.9(Cd1-xMgx)0.1O (0 ≤ x ≤ 1.0) nanostructured films investigated by using the X-ray diffraction, scanning electron microscopy, atomic force microscopy, electrical resistivity, optical absorption and photoluminescence ...
Read More
In the present work, we report the structural and optical properties of sol-gel synthesized Zn0.9(Cd1-xMgx)0.1O (0 ≤ x ≤ 1.0) nanostructured films investigated by using the X-ray diffraction, scanning electron microscopy, atomic force microscopy, electrical resistivity, optical absorption and photoluminescence spectroscopic techniques. The X-ray diffraction study has revealed the hexagonal wurtzite crystal structure having favorable c-axis orientation for the increase in Mg concentration. The stress-strain calculation reveals the compressive stresses in Cd rich films whereas Mg rich films experience the tensile stress. Reduction of grain size and surface roughness has been observed with the increase in Mg concentration with more spherical grains. The AFM and SEM micrographs reveal the smooth surface morphology of the synthesized films. The magnesium rich films show high transmission in the visible and NIR region but show decrease in it with the increase in Cd concentration. The band gap increases from 3.19 to 3.40 eV with increase in Mg content. The photoluminescence measurement reveals the decrease in the defects and increase in band gap with the increase in Mg content in the films. The electrical resistivity has been found to be increased from 0.3×10 2 to 169.4×10 2 Ω-cm with increase in Mg concentration. The present study reports that the compositions x=0.4 and x=0.6 have the optimized combination of optical transmittance and better electrical resistivity values in this system for their possible applications as transparent conductors. The present results provide important data for TCOs processing with an optimized content of metal dopants for better transparency and conductivity.