Ashish Gupta; Deoram V. Nandanwar; Sanjay R. Dhakate
Abstract
Zinc oxide (ZnO) nanoparticles, self-assembled in the form of one dimensional ZnO nanofibers were synthesized using electrospinning technique from solution of polyvinyl alcohol (PVA) and zinc acetate followed by calcination at 600°C in oxidizing environment. Scanning Electron Microscope (SEM) analysis ...
Read More
Zinc oxide (ZnO) nanoparticles, self-assembled in the form of one dimensional ZnO nanofibers were synthesized using electrospinning technique from solution of polyvinyl alcohol (PVA) and zinc acetate followed by calcination at 600°C in oxidizing environment. Scanning Electron Microscope (SEM) analysis demonstrates that morphology of ZnO nanofibers having rough surface and corresponding Energy Dispersive Spectrometry (EDAX) confirmed the Zn: O atomic ratio approximately in 50:50. Transmission electron microscopy (TEM) images clearly demonstrate the rough morphology is due to the self-assembling of ZnO nanoparticles having diameter approximately 50nm. X-ray Diffraction (XRD) reveals the polycrystalline structure and Raman spectra show some shifts in phonon modes. The PL graph show exceptional emission at 342nm due to band-band transition. Under solar radiations as produced ZnO nanofibers degrades the 99% of 25ppm acid fuchsine which proven through UV spectra when compared to blank dye solution. This shows that natural solar radiations are sufficient to excite theses self-assembled high surface area ZnO nanofibers to show its photocatalytic activity.
Damanpreet Kaur; Nahar Singh;Sanjay R. Dhakate; Ashish Gupta
Abstract
The objective of the present investigation is to deliver antiemetic GH (Granisetron hydrochloride) drug to cancer patient through nanofibers transdermal patch to overcome the problem of chemotherapy induced post-operative side effects like nausea and vomiting. The biodegradable poly vinylalcohol (PVA) ...
Read More
The objective of the present investigation is to deliver antiemetic GH (Granisetron hydrochloride) drug to cancer patient through nanofibers transdermal patch to overcome the problem of chemotherapy induced post-operative side effects like nausea and vomiting. The biodegradable poly vinylalcohol (PVA) and polyvinyl pyrrolidone (PVP) electrospun composite nanofiber based transdermal patch was developed and anti-emetic drug was loaded by active loading in it. The in-vitro drug release from nanofibers patch demonstrates that there is a controlled release pattern of the drug and release rate is varying with PVP content in the composite nanofiber patch. Also from the data of cumulative drug permeation and steady state flux demonstrates that rate of drug release through membrane and permeation across skin increases with increasing concentration of PVP. The drug release follows Higuchi model of kinetics. While marketed drug tablet follows the zero order kinetic model of drug release. The regression values obtained for both the formulations lie in the range of 0.9484 – 0.951 which suggests the mechanism of drug release is due to the diffusion of embedded drug molecule and erosion of polymer from nanofiber an aqueous medium. Thus the present investigation gives impetus to work in the direction of delivering anti-emetic drug through nanofibers transdermal patch.
Anisha Chaudhary; Ashish Gupta; Rakesh B. Mathur; Sanjay R. Dhakate
Abstract
Electrospun nanofibers based antimicrobial filter were examined for their capability to build conductive environment. An antimicrobial agent, silver nitrate (AgNO3), was added to the nanofibers membrane for its ability to prevent growth of microorganisms over the filter media. In this direction in the ...
Read More
Electrospun nanofibers based antimicrobial filter were examined for their capability to build conductive environment. An antimicrobial agent, silver nitrate (AgNO3), was added to the nanofibers membrane for its ability to prevent growth of microorganisms over the filter media. In this direction in the present investigation the different fractions of silver nanoparticles were in-situ synthesized in PAN solution and then polyacrylonitrile (PAN)-silver composite nanofibers membrane filter was prepared by electrospinning technique. The resultant solution and PAN-silver composite nanofibers was characterized by UV–visible spectroscopy, scanning electron microscope, atomic force microscope and X-ray diffraction. Antibacterial property of PAN silver composite nanofibers were investigated against gram positive Staphylococcus aureus and gram negative Escherichia coli microorganisms. The formation of clear zone suggests that composite nanofibers containing silver nanoparticles show strong antibacterial activity and it increases with increasing silver content in the composite nanofibers. The PAN-silver composite nanofibers sheet was also examined for filtration of microorganisms and dust particles. It was observed that PAN-silver composite nanofibers filter proven to be an excellent filter for creating microorganism and dust free hygienic environment. Thus electrospun PAN nanofibers filters containing an antibacterial agent can be a promising solution for effective microorganism filtration from indoor air in hospitals or other places which are more prone to bacterial infections.