Pooja Singh; Abhishek Kumar; Atul P. Singh; Rajesh K. Yadav
Abstract
Covalent organic frameworks (COFs) are a class of porous organic polymers with designable and predictable platform that may provide new opportunities to develop a metal-free in-situ prepared photocatalyst by condensation method. Currently, we have designed a new class of two dimensional ...
Read More
Covalent organic frameworks (COFs) are a class of porous organic polymers with designable and predictable platform that may provide new opportunities to develop a metal-free in-situ prepared photocatalyst by condensation method. Currently, we have designed a new class of two dimensional covalent organic frameworks (2DCOFs), which is important for further growth in this promising field for boosting selective solar chemical productions under solar light. For this scientific research work, perylene-3, 4, 9, 10-tetracarboxylic dianhydried (PDAH) and tetraaniline-4, 4′, 4″, 4‴-(ethene-1, 1, 2, 2-tetrayl) (TAET) have been attached by a condensation method first time to the fabrication of in-situ 2DCOFs photocatalyst. The photocatalyst-biocatalyst attached system urbanized using 2DCOFs as photocatalyst functions in a highly selective manner, leading to high NADH regeneration (83.68%), followed by its consumption in L-glutamate production (89.95%) from α-ketoglutarate. In this article, in-situ prepared photocatalyst has an excellent solar light-harvesting ability, band gap suitability, and highly organized π-electron channels are very applicable for highly selective solar chemical (L-glutamate) production and expected to trigger further interest in developing flexible films for solar energy transformation applications.
Manuel Fernandes; Kshitij RB Singh; Tanushri Sarkar; Pooja Singh; Ravindra Pratap Singh
Abstract
Magnesium oxide nanoparticles have emerged as a potential candidate for meeting ends of various problems due to its unique properties such as biodegradability, non-toxicity, inhibition of biofilm growth and degradation of harmful dyes such as methyl violet and many more. Along with its easy synthesis ...
Read More
Magnesium oxide nanoparticles have emerged as a potential candidate for meeting ends of various problems due to its unique properties such as biodegradability, non-toxicity, inhibition of biofilm growth and degradation of harmful dyes such as methyl violet and many more. Along with its easy synthesis by methods such as sol-gel technique, precipitation method, and green synthesis, it is widely applicable for toxic waste remediation, antibacterial materials, removal of industrial pollutants and also used in anti-arthritic and anti-cancer activities. Prior reviews have laid focus on singular domains whereas our review clubs three major domains i.e., clinical, agricultural and environmental that are involved in the day to day life of plants as well as animals. Besides the above information, properties, synthesis, nanotoxicity and future perspectives of magnesium oxide nanoparticles have also been elaborated in this review.
