Prashant B. Chouke; Ajay K. Potbhare; Ganesh S. Bhusari; Subhash Somkuwar; Dadamia PMD Shaik; Raghvendra K. Mishra; Ratiram Gomaji Chaudhary
Abstract
The present work portray the Aspidopterys Cordata (AC) leaf extract-assisted fabrication of zinc oxide nanospheres (ZnO NSs) using an eco-friendly approach for antibacterial and antioxidant activity. As fabricated ZnO NSs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), ...
Read More
The present work portray the Aspidopterys Cordata (AC) leaf extract-assisted fabrication of zinc oxide nanospheres (ZnO NSs) using an eco-friendly approach for antibacterial and antioxidant activity. As fabricated ZnO NSs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), energy dispersive X-ray diffraction (EDX), UV-Visible diffuse reflectance spectroscopy (UV-DRS), Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission electron microscope (TEM) for authenticate the structure, shape, size, chemical state, and morphological facet. XRD pattern showed the strong and intense diffraction peaks indicating the formation of crystalline ZnO NSs with hexagonal phase. Further, EDX revealed the formation of highly pure ZnO with signals of Zn and O elements. UV–DRS reveals absorption band at 370 nm, assigned to the intrinsic band-gap absorption of ZnO, owing to the electron transitions from valence band to conduction band. TEM images inveterate the formations of ZnO NSs with mean particle size of 11.6 nm. The antibacterial activity of ZnO NSs was examined against gram-positive (Staphylococcus aureus) and gram-negative (Proteus vulgaris, Escherichia coli, and Klebsiella pneumonia) human pathogenic bacteria using ZnO NSs by agar-well diffusion method. Furthermore, ZnO NSs exhibited significant antioxidant activity against scavenging 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals.

Jay A Tanna; Ratiram Gomaji Chaudhary; Nilesh V Gandhare; Harjeet D Juneja
Abstract
Present study demonstrates the synthesis of alumina nanoparticles (NPs) by sol-gel method and characterized by various standard microscopic techniques like Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Energy ...
Read More
Present study demonstrates the synthesis of alumina nanoparticles (NPs) by sol-gel method and characterized by various standard microscopic techniques like Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Energy Dispersive Spectroscopy (EDS), FT-IR, UV-visible, and Thermogravimetry-Differential Thermogravimetry (TG-DTA) to evaluate the size, shape and composition of nanoparticles. Furthermore, a solvent free green synthesis of 3, 4-dihydropyrimidinones derivatives were carried by using alumina nanoparticles (γ-Al2O3 NPs) as a catalyst through Biginelli reaction of aromatic aldehydes, β-ketoesters, and urea. The structures of the obtained products were confirmed by Fourier transform infrared (FT-IR), and proton nuclear magnetic resonance ( 1 H NMR) spectra. Effective results were obtained by using nano catalyst. Therefore, present protocol is favored as it offers advantages of higher productivity, short reaction times, simplicity and easy workup. Besides, catalyst is an inexpensive, reusable and recyclable up to four cycles without loss of its activity.
Ratiram Gomaji Chaudhary; Jay A. Tanna; Nilesh V. Gandhare; Alok R. Rai; Harjeet D. Juneja
Abstract
Nickel nanoparticles (Ni NPs) with a crystalline size of around 30 nm have been synthesized successfully via the chemical reduction method. Ni NPs were obtained through a nickel salt with hydrazine hydrate at 80 °C temperature by using ethylenediamine as protective agent. The synthesized nanoparticles ...
Read More
Nickel nanoparticles (Ni NPs) with a crystalline size of around 30 nm have been synthesized successfully via the chemical reduction method. Ni NPs were obtained through a nickel salt with hydrazine hydrate at 80 °C temperature by using ethylenediamine as protective agent. The synthesized nanoparticles were characterized by using FTIR spectroscopy, powder X-ray diffraction pattern, ultraviolet-visible spectroscopy, energy dispersive X-ray spectroscopy (EDS), thermogravimetry (TG/DTG), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The size and morphology behavior of NPs were studied by PXRD, SEM and TEM techniques. Furthermore, its applications studies were carried out as catalyst for Knoevenagel condensation reaction of aromatic aldehydes and malononitrile under solvent free conditions. The efficacy of NPs catalyst was exhibited an excellent recyclability and reusability up to four times without any additional treatment. The silent feature of nickel nanoparticles were found as efficient, cleaner reactions profiles and simple workup. Moreover, its comparative antibacterial activities were performed by using common solvents and sonication under standard method. The antibacterial activities were tested against human bacterial pathogen such as Staphylococcus aureus, Escherichia coli, Klebsiella sp, Enterococcus faecalis and Pseudomonas aeruginosa using well diffusion method. Nonetheless, the antibacterial activities of Ni nanoparticles (20 to 60 ug) were compared with four well known antibiotics i.e. Amikacin (30 mcg), Ciprofloxacin (5 mcg), Gentamicin (5 mcg) and Norfloxacin (10 mcg). The highest antimicrobial activity of Nickel nanoparticles were found against Pseudomonas aeruginosa, Staphylococcus aureus (21 mm) and Klebsiella sp. (20 mm). However, the results reveal an efficient antimicrobial activity against pathogenic bacteria under sonication than common solvent technique.