Bianca Rita Pistillo; Kevin Menguelti; Didier Arl; Renauld Leturcq; Damien Lenoble
Abstract
Plasma radicals assisted polymerization via CVD (PRAP-CVD) is emerging as an efficient alternative to conventional vapour based techniques to synthesise and deposit conjugated polymers. PRAP-CVD process is based on the concomitant but physically separated injection of low-energy oxidative radical initiators ...
Read More
Plasma radicals assisted polymerization via CVD (PRAP-CVD) is emerging as an efficient alternative to conventional vapour based techniques to synthesise and deposit conjugated polymers. PRAP-CVD process is based on the concomitant but physically separated injection of low-energy oxidative radical initiators and vaporized monomer species into a reactor where temperature and pressure are finely controlled. Gas phase oxidative radicals are generated by a remote plasma chamber from a pure or diluted initiator. The low deposition temperature, below 100 °C, allows polymers to be directly synthesised on a wide range of substrates, including fabric, paper and plastic, without any thermal degradation and keeping a high degree of surface conformality. Additionally, the PRAP-CVD does not require post-deposition rinsing procedure which allows a wider range of application. PRAP-CVD PEDOT depositions have been carried out on different substrates with a transparency higher than 80% in the visible range.
