Ganeshlenin Kandasamy; Atul Sudame; Dipak Maity
Abstract
Herein, we have reported an easy process for the synthesis of superparamagnetic iron oxide nanoparticles (SPIOs, with a size of ~ 10 nm), where these SPIOs are surface-functionalized with novel pi-electron rich surfactants such as 1,4-benzene dicarboxylic acid (BDA) and 2-amino-1,4-benzene dicarboxylic ...
Read More
Herein, we have reported an easy process for the synthesis of superparamagnetic iron oxide nanoparticles (SPIOs, with a size of ~ 10 nm), where these SPIOs are surface-functionalized with novel pi-electron rich surfactants such as 1,4-benzene dicarboxylic acid (BDA) and 2-amino-1,4-benzene dicarboxylic acid (ABDA). The BDA/ABDA capped SPIOs have demonstrated well crystalline character, excellent colloidal stability, and high saturation magnetization. Moreover, these capped SPIOs have shown good heating ability in magnetic-hyperthermia studies under an alternating magnetic field at a medically suitable frequency, as compared to the previously reported SPIOs based heating-agents. Thus, the as-prepared BDA/ABDA-SPIOs can be used as promising heating agents for magnetic-hyperthermia based biomedical applications.

Ganeshlenin Kandasamy; Atul Sudame; Dipak Maity
Abstract
In this work, we have synthesized oleylamine (OM)-coated hydrophobic monodispersed SPIONs with an average particle size of ~9 nm via thermal decomposition method. The as-prepared hydrophobic SPIONs are co-encapsulated along with a drug (curcumin, Cur) within the mixed micelles based nanoformulations ...
Read More
In this work, we have synthesized oleylamine (OM)-coated hydrophobic monodispersed SPIONs with an average particle size of ~9 nm via thermal decomposition method. The as-prepared hydrophobic SPIONs are co-encapsulated along with a drug (curcumin, Cur) within the mixed micelles based nanoformulations which is made of d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) and Pluronic F127 while keeping the TPGS:F127 ratios at 100:0, 75:25, 50:50, 25:75 and 0:100. Then, the nanoformulations are characterized for hydrodynamic size via dynamic light scattering (DLS) technique, and drug/SPIONs encapsulation efficiencies are determined via UV-vis spectroscopy. Among all the nanoformulation, the mixed micelle with 50:50 TPGS:F127 has exhibited relatively lower hydrodynamic diameter (Dh) (~ 84 nm), better encapsulation efficiencies of Cur and SPIONs (~95% / 56%), and high yield (above 90%). Moreover, morphology and encapsulation of SPIONs/Cur inside the optimized 50:50 TPGS:F127 nanoformulation is confirmed by TEM. In addition, only 10% of Cur is released during 12h time period from optimized nanoformulation indicating the sustained-release property, whereas ~68% of Cur is quickly released in free Cur experiments for the same time period. Hence, the SPIONs/Cur are efficiently co-encapsulated inside the TPGS:F127 mixed micelle based nanoformulation which could be used for further biomedical applications.

Ganeshlenin Kandasamy; Atul Sudame; Dipak Maity
Abstract
In recent times, superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as heating agents in magnetic hyperthermia therapy (MHT) to kill malignant cells in cancer treatments, which is mainly due to their excellent magnetic properties and biocompatibility. However, it is still a challenge ...
Read More
In recent times, superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as heating agents in magnetic hyperthermia therapy (MHT) to kill malignant cells in cancer treatments, which is mainly due to their excellent magnetic properties and biocompatibility. However, it is still a challenge to coat SPIONs with suitable surfactants and to apply an appropriate alternative magnetic field (AMF) at specific frequency to achieve enhanced heating effects in MHT. In this work, the as-synthesized novel short-chain surfactants (i.e., amino-terephthalic acid (ATA) and terephthalic acid (TA)) coated hydrophilic SPIONs are synthesized and subsequently involved in calorimetric hyperthermia studies to investigate their intrinsic heating capability by varying (i) their concentrations from 1 - 8 mgFe/ml and (ii) AMFs at different frequencies (263.2 – 752.39 kHz) while achieving the temperature above 42 °C – therapeutic hyperthermia temperature. It is found that the heating rate of TA-SPIONs is faster as compared to ATA-SPIONs on exposure to the AMF. However, the highest specific absorption rate (SAR) value of 129.80 W/gFe is attained for ATA-SPIONs with 2 mgFe/ml concentration on exposure to AMF at 752.39 kHz. Thus, ATA/TA coated SPIONs are very promising agents for magnetic hyperthermia and could be further investigated in in vitro/in vivo cancer treatments.