DOI: 10.5185/amlett.2023.041733

SUPPORTING INFORMATION

OPEN

Phenoxy-imine based Mononuclear Zn(II) Compounds: Applications as Polymerization Catalysts

Sourav Singha Roy¹ | Sriparna Sarkar¹ | Debashis Chakraborty¹*

¹Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

*Corresponding author: E-mail: dchakraborty@iitm.ac.in; Tel.: +91 44 2257 4223 (Prof. Debashis Chakraborty)

Web of Science Researcher ID: ACZ-5940-2022

Entry	Catalyst	Time (h) ^a	Conversion $(\%)^b$	$M_{\rm n}^{\rm (Theo)c}$ (kg/mol)	$M_{\rm n}^{({\rm Expt})d}$ (kg/mol)	$[\mathcal{D}]^e$	$P_{\rm m}/P_r^f$
1	1	14	98	28.58	25.34	1.28	$0.64 (P_{\rm r})$
2	2	14	98	28.53	31.21	1.22	$0.63 (P_{\rm r})$
3	3	10	99	28.79	30.89	1.20	$0.67 (P_{\rm r})$
4	4	12	97	28.25	32.41	1.22	0.66 (<i>P</i> _r)
5	5	22	99	28.86	30.44	1.20	$0.74 (P_{\rm m})$
6	6	22	98	28.53	30.19	1.21	$0.72 (P_{\rm m})$
7	7	18	99	28.79	29.98	1.18	$0.78~(P_{\rm m})$
8	8	20	98	28.54	31.12	1.24	$0.77 (P_{\rm m})$

Table S1. Polymerization data for *rac*-LA using 1–8 as catalysts in the ratio 200:1 at 70 °C in THF.

^{*a*} Time of polymerization measured by quenching the polymerization reaction at maximum conversion. ^{*b*} Calculated from ¹H NMR spectrum. ^{*c*} M_n^{Theo} at maximum conversion = (200 × 144.14) × conversion + Mol Wt_{end groups}. ^{*d*} Measured by GPC at 40 °C in THF relative to polystyrene standards with Mark–Houwink corrections; $M_n^{\text{Expt}} = 0.58 M_n^{\text{GPC}}$ for *rac*-LA.^{80 *e*} Measured by GPC at 40 °C. ^{*f*} Calculated from the homonuclear decoupled ¹H NMR spectrum.

22.89

22.85

22.89

22.93

22.89

22.85

22.89

25.44

24.12

25.68

24.13

24.44

23.57

24.28

1.23

1.18

1.25

1.17

1.19

1.15

1.17

Entry	Catalyst	Time(min) ^a	Conversion $(\%)^b$	$M_{\rm n}^{\rm (Theo)c}$	$M_{\rm n}^{({\rm Expt})d}$	$[D]^e$
				(kg/mol)	(kg/mol)	
1	1	28	99	22.93	25.32	1.21

99

99

99

99

99

99

99

Table S2. Polymerization data for ε -CL using **1–8** as catalysts in the ratio 200:1 at 100 °C.

30

13

15

40

37

23

26

^a Time of polymerization m	easured by quenching the J	olymerization	reaction at maxin	mum conversion.	^b Calculated f	from
¹ H NMR spectrum. $^{c}M_{n}^{\text{Theo}}$	at maximum conversion =	(200×114.14)	\times conversion + N	Mol Wtend groups. d	Measured by (GPC

2

3

4

5

6

7

8

2

3

4

5

6

7

8

https://aml.iaamonline.org

at 40 °C in THF relative to polystyrene standards with Mark–Houwink corrections; $M_n^{\text{Expt}} = 0.56 M_n^{\text{GPC}}$ for ε -CL.^{80 e} Measured by GPC at 40 °C.

Entry	Cat	Cocat	Time	Conversion	CO ₂	Polym	TON ^e	TOF ^f	$M_{ m n}{}^{ m g}$	$[D]^{g}$	Isolated	<i>m</i> - centered
	(C)	(Cocat)	(h)	(%) ^b	(%) ^c	(%) ^d		(h ⁻¹)	(kg mol ⁻¹)		$PCHC(g)^{h}, (\%)$	tetrads ⁱ (%)
1	5	PPNCl	16	60	54	56	600	37	17.58	1.17	0.95 (24)	71
2	5	TPPCl	16	66	61	70	660	41	19.13	1.08	1.28 (32)	72
3	5	TBAB	16	62	56	62	620	39	15.11	1.28	0.96 (24)	71
4	1	TPPCl	48	20	30	10	200	04	16.89	1.21	0.26 (6)	69
5	2	TPPCl	48	22	28	12	220	05	12.09	1.09	0.24 (6)	70
6	3	TPPCl	48	25	32	15	250	05	17.00	1.20	0.29 (7)	68
7	4	TPPCl	48	21	25	20	210	04	11.64	1.09	0.19 (5)	69
8	6	TPPCl	16	68	62	72	680	42	11.90	1.10	1.32 (33)	75
9	7	TPPCl	14	70	56	68	700	50	19.79	1.11	1.13 (28)	74
10	8	TPPCl	14	69	52	62	690	49	13.91	1.19	0.99 (25)	74

Table S3.	ROCOP	of CO ₂ with	CHO using	1-8 with	[CHO]/[0	Cat]/[CoCat]	$= 1000:1:1^{a}$
Lable DD.	nocor	$OI CO_2$ with	cito using	I O WILLI		Culj/[CoCulj	- 1000.1.1

^a Reaction conditions: 80 °C, 40 bar of CO₂, neat CHO (4 g, 4.12ml). ^b% CHO conversion versus the theoretical maximum (100%), determined from the ¹H NMR spectrum by comparison of the relative integrals of the resonances which are assigned as the carbonate (4.65 ppm for PCHC and 4.00 ppm for *trans*-cyclic carbonate) and ether linkages (3.45 ppm) against CHO (3.00 ppm). ^c% CO₂ uptake versus the theoretical maximum (100%), determined from the ¹H NMR spectrum by comparison of the relative integrals of the resonances assigned to the carbonate (4.65 ppm for PCHC and 4.00 ppm for *trans*-cyclic carbonate) and ether (3.45 ppm) linkages. ^d% PCHC formation versus the theoretical maximum (100%), determined from the ¹H NMR spectrum by comparison of the relative integrals of the resonances assigned to the carbonate (4.65 ppm for PCHC and 4.00 ppm for *trans*-cyclic carbonate) and ether (3.45 ppm) linkages. ^d% PCHC formation versus the theoretical maximum (100%), determined from the ¹H NMR spectrum by comparison of the relative integrals due to the PCHC (4.65 ppm) and *trans*-cyclic carbonate (4.00 ppm). ^e Turnover number (TON) = number of moles of CHO consumed/number of moles of catalyst. ^fTurnover frequency (TOF) = TON/time (h). ^g Determined by GPC, in THF with calibration using narrow-M_n polystyrene standards. ^h Amount of PCHC collected (% PCHC relative to CHO used = wt. PCHC (g)/4 x 100). ⁱ determined by ¹³C NMR spectroscopy (CDCl₃, 125 MHz).

Entry	Cat	Time	Conversion(CO_2	Polym	TON ^e	TOF ^f	$M_{\rm n}^{\rm g}(\rm kg/m$	$[D]^{g}$	Isolated $\mathbf{PPC}(\alpha)^{h}(0)$
	(C)	(h)	%) ²	(%) ^c	(%)-		(h ⁻¹)	01)		$PPC(g)^{n}$, (%)
1	5	14	82	63	51	820	59	11.18	1.15	0.20(7)
2	5	14	87	68	44	870	62	11.59	1.09	0.21 (7)
3	1	18	68	70	48	680	38	12.13	1.08	0.18 (6)
4	2	18	70	72	49	700	39	15.61	1.12	0.20(7)
5	3	18	76	77	44	760	42	13.19	1.31	0.21 (7)
6	4	18	75	72	45	750	42	12.87	1.28	0.21 (7)
7	6	14	78	70	61	780	43	16.28	1.20	0.28 (9)
8	7	14	80	72	54	800	45	13.55	1.22	0.22 (7)
9	8	14	80	70	55	800	45	12.97	1.25	0.23 (8)

Table S4. ROCOP of CO₂ with PO using 1-8 with [PO]/[C]/[TPPC1] = 1000:1:1^a

^a Reaction conditions: 40 °C, 60 bar of CO₂, neat PO (3 g, 2.20ml). . ^b % of PO conversion determined from the relative integrals in the ¹H NMR spectrum of PPC (poly(propylenecarbonate)) (4.92 ppm, 1H), PC (propylene carbonate) (4.77 ppm, 1H), and PPO (3.46-3.64 ppm, 3H). ^c % of CO₂ selectivity determined by the relative integrals in the ¹H NMR spectrum of PPC (4.92 ppm, 1H) and PC (4.77 ppm, 1H) compared with PPO (3.46-3.64 ppm, 3H). ^d Polymer selectivity determined by the relative integrals in the ¹H NMR spectra of PPC (4.92 ppm, 1H) against PC (4.77 ppm, 1H). ^e Turnover number (TON) = number of moles of PO consumed/number of moles catalyst. ^fTurnover frequency (TOF) = TON/time(h).

https://aml.iaamonline.org

^g Determined by GPC, in THF with calibration using narrow- M_n polystyrene standards. ^h Amount of PPC collected (% PPC relative to PO used = wt. PPC (g)/3 x 100).

Fig. S1. Stacked ¹H NMR of ligands and compound 1-4.

Fig. S2. Stacked ¹H NMR of ligands and compound 5-8.

https://aml.iaamonline.org

Fig. S3. Bidentate and tridentate imino-phenolate zinc compounds reported by different research groups.

Fig. S4. ¹H NMR spectrum of the crude product of *rac*-LA and 7 in the ratio of 15:1.

OPEN

https://aml.iaamonline.org

Fig. S5. MALDI-TOF spectrum of the oligomer of *rac*-LA and 7 in the ratio of 15:1.