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ABSTRACT

Ni(II) Schiff base complexes containing diethylenetriamine-2,2'-bisphenol (L1) and
3,3'-iminebispropilamine-2,2'-bisphenol (L2) ligands were synthesized and
embedded into SBA-15 functionalized with 3-chloropropyltrimethoxysilane (3-
CPTMS/SBA-15). The characterization of the Ni(Il) Schiff bases embedded into
the mesoporous of 3-CPTMS-SBA-15 by elemental analysis, X-ray diffraction,
nitrogen adsorption and desorption, and thermogravimetry, revealed that the
mesoporous structures were maintained. From BET data, the surface area decreased
from 517 m%/g (SBA-15) to 326 m?/g [Ni(L1)]-SBA-15 and 296 m%/g [Ni(L2)]-
SBA-15, with pore size diameter of ca. 5.6 nm. All materials presented isotherm
type IV and H1 hysteresis. The TG/DTG curves showed the desorption of adsorbed
water, coordinated water and ligands decomposition, and an increase in the thermal
stability of the Ni(IT) complexes embedded into SBA-15, evidencing that they are
promising materials for adsorption, for remotion of heavy metals from aqueous
media due to its chelating properties; and catalytic applications, because they

contain oxygen and nitrogen as donor atoms, being of particular interest.
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INTRODUCTION

Schiff bases were prepared for the first time in the year
1864 by Hugo Schiff, with the condensation reaction
between primary amine and carbonyl group (aldehyde or
ketone). A Schiff base is a carbon-nitrogen double bond (-
CH=N-) known as the azomethine group containing
compound in which the carbonyl group (C=O) of an
aldehyde or ketone has been replaced by primary amine.
The azomethine group present in the Schiff base should
play an important role for catalytic reactions. The nano-
functionalized metal complexes of Schiff base ligands
demonstrate the broad range of opportunities and
challenges of this approach [1,2].

Schiff base complexes of metal ions show high
catalytic activity and play a significant role in various
reactions improving yield and product selectivity [3-9].
They are efficient catalysts for homogeneous and

heterogeneous  catalysis for reactions such as
polymerization, oxidation, hydroxylation, aldol
condensation and epoxidation. The activity varies with the
metal ions and type of ligands in the coordination sites [10].
The complexes known as “salen” showed activity in ring
opening oligomerization or polymerization of epoxides.
The name “salen” is a contraction for salicylaldehyde and
ethylenediamine. The Ni(II) Schiff base complexes of
ethylenediimine and acetylaldimine were used for
epoxidation of olefins with sodium hypochloride [11].
Aromatic Schiff bases or their metal complexes catalyze
reactions on oxygenation [12], hydrolysis [13] and
decomposition [14]. The anchoring of Ni(II) Schiff base
into the MCM-41 via silicon alkoxide has been reported
[15,16] Recent works report the application of Shiff bases
in biomedicine [17], as catalyst for nitroaromatic reduction
[18], and biological systems [19].
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Mesoporous materials, such as silica, alumina and
zeolite [20] have been evaluated as solid support for metal
complex catalysts for applications in organic reactions.
Since the discovery of the MCM-41 and SBA-15 materials
in the 90's, these mesoporous materials have been
extensively studied because of their appreciable
characteristics such as high mechanical strength, thermal
stability, porosity, surface area and presence of mesopore
interconnected by micropores [21-24], making this solid as
a great promise material for anchoring complexes with
transition metals.

Schiff bases have attracted much attention in inorganic
materials chemistry due to their ease of synthesis resulting
from the condensation of primary amines with a compound
having an active carbonyl group and because they form
stable complexes when coordinated to transition metals
with different states oxidation, thus, considered special
ligands [25].

Transition metals Schiff bases encapsulated into
mesoporous solids appear as new materials for biological
and catalytic applications [26]. The use of nanoparticles and
functional nanocatalysts, based on transition metal oxides,
opens new opportunities for the application of more
complex systems, such as those based on Schiff structures,
which  allow controlled release and  specific
functionalization in precision nanomedicine [27].

This work aims the functionalization of nanotubes
of SBA-15 with 3-Chloro-Propyl-Tri-Methoxy-Silane
(3-CPTMS) so that the square planar complexes of Schiff
base [Ni(L1)], and [Ni(L2)] octahedral, where L1 = Schiff
base using diethylenetriamine and L2 = Schiff base using
the 3,3'-iminobispropilamina can be encapsulated into the
SBA-15 mesoporous material. These reactants were used as
coupling agents for surface modification of SBA-15.

EXPERIMENTAL
Synthesis of the Schiff bases

The synthesis of the Schiff base ligands was carried out as
follows: first, 10 mmol of the carbonylated compound
salicylaldehyde (Sigma-Aldrich, Saint Louis, MO, USA)
were added to 60 mL of methanol (Merck Inc., Rahway,
N.J., USA) under stirring and heated at 50 °C. Then, 5
mmol of diethylenetriamine (Sigma-Aldrich, Saint Louis,
USA) was slowly added to the mixture and reacted for one
hour. Then, for obtaining the [Ni(L1)] complex, 5.2 g of
the NiCl,.6H20 (Alfa Chemistry, NY, USA) and 5.2 g of
sodium acetate were added, whereas for obtaining [Ni(L2)],
the amine used was 3,3 -iminobispropylamine (with 1.2 g
of nickel chloride. The obtained complex presented brown
colour. Finally, the complexes were washed with cold
ethanol (Merck Inc., Rahway, N.J., USA) and kept in the
desiccators for five days.

Synthesis and functionalization of SBA-15

The SBA-15 was synthesized in strong acid medium, using
tetracthyl orthosilicate — TEOS (Sigma-Aldrich, Saint
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Louis, MO, USA), as silica source and triblock copolymer
P123 — EO20PO70EO20 (Sigma-Aldrich, Saint Louis,
MO, USA) as template, according to hydrothermal
procedure  previously  reported [28]. For the
functionalization, 3.0 grams of the calcined SBA-15
mesoporous silica were suspended in 50 mL of 37%
solution of HCl (Merck Inc., Rahway, N.J., USA) and
stirred for one hour, washed with distilled water and dried
in an oven for 24 h under vacuum. Then, the HC1-SBA-15
was refluxed with 2 mL of 3-Chloro-Propyl-Tri-Methoxy-
Silane (3-CPTMS) (Merck Inc., Rahway, N.J.,, USA) in
40 mL of xylene (Merck Inc., Rahway, N.J., USA) for
24 h. The product was washed successively with ethanol,
xylene, acetone and ethyl ether, and dried under vacuum at
100 °C for 18 hours, to obtain 3-CPTMS/SBA-15.

Complex encapsulation in the pores of SBA-15

For encapsulation of the Ni(Il) complexes, 1.0 g of
3-CPTMS/SBA-15 and 0.2 g of the [Ni(L1)] and [Ni(L2)]
Schiff bases were left in suspension in 50 mL of toluene
and refluxed for 24 hours. Then, the materials were
recovered in a Soxhlet extractor at 60 °C with toluene to
remove the excess of the complex on the external surface
of the SBA-15. The materials were dried in an oven for
30 min at 50 °C. After that, the solid was washed with
water and ethanol to remove the complex which was
not embedded and moved to an incubator at 50 °C for
24 hours. These functionalized materials were named as
[Ni(L1)]-SBA-15 and [Ni(L2)]-SBA-15, where L1 is
diethylenetriamine-2,2'-bisphenol and L2 is 3,3-
iminebispropilamine-2,2'-bisphenol ligands.

Materials characterization

The structural properties of the samples were analysed by
Bruker model D2 Phaser diffractometer with CuKa source
and a step size of 0.02°, in the range of 20 =1 to 10°. The
nitrogen adsorption/desorption was performed with the
materials, to obtain the BET surface properties, using
equipment from Micromeritics Instrument Corporation
TriStar I1 3020 V1.03. For this analysis, the materials were
previously degassed at 150 °C for 24 hours to remove the
surface moisture and physiosorbed gases. The analysis was
performed at -196 °C at relative pressure (P/Py) range of
0.01 to 0.95. The TG experiments were carried out using
TG/DTG equipment model Q600, from TA Instruments, in
the temperature range of 30 to 900°C, at heating rate of
10°C min™!, with nitrogen gas flowing at 25 mL min"!, using
alumina crucible of 900uL.

RESULTS AND DISCUSSION

Chemical composition

According to the calculations of elemental analysis for C,
H, N and Ni, the empirical formula for the compounds,
were proposed, as summarized in Table 1, as well of the
colour of them.
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It was observed that the experimental values obtained
for the complexes are consistent with theoretical values.
Thus, the obtained results confirmed the molecular
formulas and structures proposed for the complex, as
[Ni(Ll)].Z(CH3C02).H20, with L1 = C;sHi9N3O, and
[Ni(L2)].2CL.2H>0, with L2 = C2H23N30,.

Table 1. Analytical and physical data for Ni(Il) Schiff base complexes.

Empirical formula Elemental analysis (%) Yield

Proposed Determined (Calculated) (%)
(Color) -

C H N Ni
[Ni(L1)].2(CH5CO,).H,O 52.4 53 83 44 53
(Orange) (52.5) 5.1 (8.6)
[Ni(L2)].2C1.2H,O 47.9 5.2 84 86 77
(Green) (47.6) (5.5) (8.9

The empirical formula was proposed, considering the obtained values of
elemental analysis for CHN.

Crystallographic properties

From X-ray diffraction of the materials, shown in Fig. 1,
the hexagonal structure characteristic of mesoporous
materials SBA-15 type were identified. Three major
diffraction peaks were observed, concerning the
crystallographic planes whose Miller indices are (100),
(110) and (200), noting that even after anchoring the
complex on the support, the SBA-15 mesoporous material
did not lose their ordered hexagonal structure.
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Fig. 1. XRD of the synthesized materials: (a) SBA-15; (b) 3-CPTMS-
SBA-15; (c) [Ni(L1)]-SBA-15; (d) [Ni(L2)]-SBA-15.

Prior the functionalization process, the SBA-15 was
treated with hydrochloric acid, in order to activate the
surface with silanol groups (—Si—OH). It was suggested that
these groups react with 3-CPTMS, and the tri-silanol
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species could be formed inside the mesopores of the SBA-
15, as proposed in Fig. 2.
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Fig. 2. Scheme proposed for functionalization of SBA-15 with 3-
chloropropyltrimethoxysilane, for obtaining 3-CPTMS/SBA-15.
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For SBA-15 functionalization with 3-CPTMS, it was
necessary to activate the silanol groups, thus facilitating the
bond between the compound and the silica structure. The
success of the reaction depends on the availability of the
silane groups to form covalent bonds with the silylating
agent, which is possible due to the reactivity of the alkoxide
groups with the silanol groups present on the surface of the
silica SBA-15, which can occur tridentate form (see Fig. 2).
Functionalization occurs so that there is greater efficiency
in the anchoring of the complexes to silica.

The functionalized SBA-15 acts as starting material for
reaction with the Ni(Il)-Schiff bases. During the attachment
of the Schiff base into the mesopore of the 3-CPTMS-SBA-
15, the Ni(II) should bond covalently with the CPTMS.
The proposed structures for [Ni(L1)]/SBA-15 and
[Ni(L2)]/SBA-15 are shown in Fig. 3.
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Fig. 3. Scheme proposed for encapsulation of Ni(Il)-Schiff bases into the
nanopores of SBA-15, where (a) [Ni(L1)]/SBA-15; (b) [Ni(L2)]/SBA-15.
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Adsorption and desorption isotherms

The determination of the specific surface area (SA), pore
diameter (Dp) and total pore volume (Vt) were obtained by
the BET, BJH and t-plot methods, respectively [29-31]. The
mesoporous parameter of the materials (a0) represents the
distance between the pore centres of the SBA-15 structure,
obtained from the (100) plane obtained from the X-ray
diffractogram, and was calculated by applying Eq 01. These
parameters are visualized in Fig. 4.
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Fig. 4. Scheme for the hexagonal system for SBA-15 material, showing
the representation of the mesoporous parameter, interlayer distance and

pore diameter.
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Fig. 5. Nitrogen adsorption and desorption isotherm for the obtained
materials: (a) SBA-15; (b) 3-CPTMS/SBA-15; (c) [Ni(L1)]-SBA-15;
(d) [Ni(L2)]-SBA-15.
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Fig. 5 shows the N, adsorption and desorption
properties in the materials. The surface area, diameter and
volume of the material decreased during the changes in
SBA-15 suggesting the presence of bulky material within
the pores of the silica demonstrating a clear indication of
the efficiency in functionalization process with 3-CPTMS
for anchoring the complexes within the pores of the
material system. The data relating to the adsorption
properties for the obtained materials are given in Table 2.

Table 2. Textural properties of SBA-15, 3-CPTMS/SBA-15 and Ni(II)
Schiff bases encapsulated in SBA-15 nanomaterial.

a SA Vp Dp

Sample (nm)  (m%g) (cm’/g) (nm)
SBA-15 12.4 517 0.74 6.18
3-CPTMS/SBA-15 11.3 334 0.46 5.08
[Ni(L1)]-SBA-15 114 326 0.50 5.62
[Ni(L2)]-SBA-15 115 29 0.45 5.61

ap = mesoporous parameter; SA = surface area; Vp = pore volume;
Dp = pore diameter

Thermogravimetric analysis (TG/DTG)

The TG and DTG curves for obtained samples are shown
in Fig. 6. Four ranges of temperatures were observed,
corresponding to the following events: (i) adsorbed water;
(i) coordinated water; (iii) 3-CPTMS and (iv) ligands.
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Fig. 6. TG and DTG curves for the obtained samples: (a) SBA-15;
(b) 3-CPTMS/SBA-15; (c) [Ni(L1)]-SBA-15; (d) [Ni(L2)]-SBA-15.
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The temperature range (i) occurs from room
temperature up to 150 °C, which corresponds to water
adsorbed in the mesoporpous and microporous of the SBA-
15. The coordinated water molecules were observed in the
temperature range of 150-220 °C. The calcined SBA-15
suffers slow dehydroxylation up temperatures higher than
600 °C. The step (iii) corresponds to degradation of
3-CTPMS and it is clearly observed in the functionalized
SBA-15, in the temperature range of 250-375 °C. For the
sample [Ni(L2)]-SBA-15, this DTG peak is observed,
suggesting the presence of chloride interacting with the
structure, as evidenced in the empirical formula of the
Schiff base with L2 ligand. In the complexes encapsulated
in the SBA-15, the removal of the organics from ligands
were observed at maximum temperatures of 428 and 482 °C
for [Ni(L1)]-SBA-15 and [Ni(L2)]-SBA-15, respectively,
indicating an increased stability of the Schiff bases when
encapsulated into the pores of SBA-15 mesoporous
material.

CONCLUSIONS

Schiff bases complex of Ni(II) was successfully
synthesized with a yield above 50%. The elemental analysis
suggested a molecular formula for the complex:
[Ni(L1)].2CH3CO2.H,O and [Ni(L2)](2C1).2H,O (L1 =
CigH19N30,, L2 = CH23N30;). They were encapsulated
inside the pores of SBA-15, and decreased the surface,
however keeping the mesoporous parameter. From X-ray
diffraction analysis, it was observed that even after
anchoring the Schiff base complexes, the materials did not
change its ordered hexagonal structure. The decrease in
surface area, pore volume, pore diameter as compared to
the SBA-15 confirmed the presence of complexes in the
pores of the silica. By thermogravimetric analysis, it was
noticed the greater thermal stability of the complex
[Ni(L1)] and [Ni(L2)] when anchored in SBA-15. Schiff
bases are a very important class of organic compounds
because of their ability to form complexes with transition
metal, such as Ni(Il) ions for catalytic properties. Thus,
metal complexes containing Schiff bases should be
interesting compounds, because of its potential applications
in designing new catalytic materials, especially when
encapsulated in mesoporous structures.
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