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A B S T R A C T  

The main interest of this study is to investigate the correlation of thermo-magnetic 

properties with respect to each other on the basis of confinement potential strength, 

external magnetic field, and temperature dependence. Analytically calculated the 

bound state energy of the harmonic oscillatory potential using Nikiforov-Uvarov 

formalism and numerically calculated the characteristic function of the 

thermodynamic properties partition function, free energy, magnetization and 

magnetic susceptibility  with statistical quantum mechanics extending into the 

harmonic oscillator potential: Many comprehensive studies from the theoretical point 

of view were conducted on magneto-thermal properties, but all in all, they did not 

place emphasis on the functional dependence of the correlation between magneto-

thermal properties and their impact on the behavior of a system. We tried to put place 

a novel approach to investigate the correlation impact of magnetic-thermal quantities 

dependent on the external magnetic field, confinement potential, and temperature. 

We divulged comprehensive information about the system to put together this guide 

for the analysis and interpretation of the interrelation. Taking into consideration free 

energy as a functional center of magnetic and thermodynamic properties, we 

calculated and graphically simulated the interrelation of free energy, magnetic 

susceptibility, and magnetization. The nonlinear correlation between free energy and 

susceptibility exhibited.  Strong external magnetic field and confinement potential 

strength used to determine an optimized free energy to its critical value. At 

sufficiently low magnetic field and confinement potential strength determines the 

minimum value of free energy. The maximum value of magnetic susceptibility 

exhibited in certain intermediate confinement and magnetic field. As confinement 

increases, magnetization linearly decreases. In cases of sufficiently high confinement 

potential and temperature, the shortest curve of magnetic response is displayed. 

K E Y W O R D S   

Magneto-thermal, Confinement potential, Magnetic susceptibility, magnetization, 

Quantum dot, non-interacting, Nikiforov-Uvarov, Schrödinger equations. 

 

INTRODUCTION  

In condensed matter physics, quantum dots have recently 

become a very interesting topic [1-3]. There are two causes 

for it. First and foremost, quantum dots have considerable 

promise for use in single-electron transistors, quantum 

computers, solar cells, and quantum dot lasers, among other 

microelectronic devices. Secondly, and perhaps even more 

importantly, quantum dots can be thought of as a little 

laboratory where all of the predictions of quantum 

mechanics can be thoroughly examined. Any theory 

including quantum dots must take into account the nature 

of the confining potential.  
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 In situations involving a symmetric confinement 

potential the rich spectrum of crossing energy levels as a 

function of magnetic field and strong interaction effects 4 

is now fairly well defined 5 recently taking into account the 

characteristics of quantum dots under less symmetric 

configuration potentials has become the focus of attention 

the far-infrared excitation spectrum of a completely 

parabolic quantum for instance is rather simple and widely 

known today but the decreased symmetry adds additional 

aspects to the spectrum whose interpretation is significantly 

more difficult to understand [6]. Different models of 

confinement potential (CP) are easier to apply than 

analytical mathematical formulas in the realm of the 

physical world that are used to force a particle system to act 

within a specific region of space. It has been employed to 

model several physical phenomena. This is because it 

provides us with information on time as well as a relatively 

less expensive approach to simulating physical systems of 

interest compared to experimental and advanced 

computational approaches [7]. In the last few years a lot of 

research has been done on the heat capacity and entropy of 

quantum dots and other comparable low-dimensional 

systems in the presence of a magnetic field [8-9] 

nevertheless the confining potential in the majority of these 

studies has been determined using either a parabolic 

potential model (PPM)  or a square-well model (SQM)  

when a single magnetic ion and a perpendicular magnetic 

field are present Nguyen and Peeters have examined 

thermodynamic quantities like heat capacity magnetization 

and susceptibility [10]  however it is extremely difficult to 

interpret a many-electron quantum dot when electron-

electron correlations are taken into consideration. In recent 

years, there has been a lot of experimental and theoretical 

research on low-dimensional structures, and quantum dots 

in particular [11,12].  Discrete energy levels with a few 

meV spacing are produced when charge carriers are 

confined in quantum dots.  

 The physics of low-dimensional semiconductor 

materials is significantly influenced by the quantum dot 

confinement potential forecast. The morphological 

structures and properties of WBSs can be governed by their 

material design, dimensionality engineering, and device 

engineering, in addition to attempting to make sense of the 

interplay between material growth, device structure, and 

application scenarios [13]. It should be noted that 

theoretical investigations of the physical characteristics of 

quantum dots depend on an understanding of the theoretical 

confinement potential profile.  

 Theoretically, understanding the concept of the 

confining potential which is frequently shown as Gaussian 

confinement, a spherical harmonic, a pyramidal potential, a 

ring-shaped oscillator, or a double ring-shaped oscillator is 

crucial to studying quantum dots. The electrical and optical 

characteristics of quantum dots have been thoroughly 

studied over the last few decades in a variety of external 

conditions, including temperature, impurity, pressure, 

magnetic field, electric field, electron-phonon occurrence, 

and spin-orbit correlation [14–16].  

 The thermal and magnetic characteristics of electrons 

confined in quantum dots in the presence of an external 

magnetic field have been the subject of extensive research 

in recent years [17]. The effect of mean energy, heat 

capacity, entropy, magnetization, and susceptibility on 

temperature and magnetic field has been theoretically 

worked out by the authors [18–20].  The thermodynamic 

features of nanodimensions are a fascinating window for 

the newly emerging study of physics [21]. Theoretical 

investigation is done on the thermodynamic behaviors of 

the double-ring-shaped QDs [23], such as energy, entropy, 

heat capacity, and magnetic susceptibility [22–23]. 

 A potential indicator of the influence of phonons on the 

relaxation of spin between triplet and singlet states in a 

quantum dot containing two electrons investigated [24]. An 

external magnetic field provided perpendicular to the plane 

will boost the rotational frequency's spin-orbit impact [25] 

Assist in optimizing a system's free energy so that there is 

no longer any system disorder. 

 By assuming a solution-free particle motion with an 

account of the SE along the axial direction, almost all 

authors discovered an exact solution for the canonical 

partition function [26]. As a result, calculations were made 

about the system's magneto-thermal behavior. As such, 

many authors have intensively focused on the dependence 

of external fields merely without considering the 

interrelated thermo-magnetic properties. In this study, we 

investigated the correlation between thermomagnetic 

properties such as magnetization and magnetic 

susceptibility evoked due to its exposure to external field 

effects like temperature and external magnetic field.  

 The magnetization and susceptibility of a two-electron 

parabolic quantum dot are studied in the presence of 

electron–electron and spin–orbit interactions as a function 

of the magnetic field, and temperature is studied [27]. 

Considering  the canonical partition function to uncover 

known as the von Neumann entropy that is fundamental to 

probing the thermodynamic information [28-29] of a 

system without loss of generality of laws of 

thermodynamics and thus the free energy obtained from the 

partition function with having regard to we approached to 

calculate the correlation of free energy which, shows the 

tendency in resisting no more system disorder as a function 

of magnetization, as a function of magnetic susceptibility, 

and susceptibility as a function of magnetization 

dependence on the external magnetic field, confinement 

potential, and temperature is investigated. 

MATHEMATICAL FORMALISM  

The Nikiforov-Uvarov (NU) 

Based on the solution of hypergeometric second-order 

differential equations using unique orthogonal functions, 

the Nikiforov-Uvarov (NU) technique was developed [30]. 
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When a potential is specified, the Schrödinger or 

Schrödinger-like equations in spherical coordinates can be 

solved systematically to get the precise or specific solutions 

by reducing them to a generalized equation of hyper-

geometric type with the required coordinate transformation 

r→s. 

 The Schrödinger equation's solution may be applied 

more directly, simply, and elegantly with the help of the NU 

approach. The discrete spectrum's energy levels are 

produced from the particle system by applying the NU 

approach to solve the eigenvalue equations following the 

separation of the SE. The primary formula is strongly 

related to the procedure [31]. When a physical system 

oscillates around a mean value at one or more 

distinguishable frequencies, it is said to be in harmonic 

motion [32]. Such a system describes a bounded particle 

traveling in a potential well as having a velocity that 

increases quadratically with the distance from the minimum 

of the potential well.  

𝑑2𝑈(𝑟)

𝑑𝑟2
+
2𝜇

ℏ2
[𝐸 −

1

2
𝜇𝜔2𝑟2 −

ℏ2ℓ(ℓ + 1)

2𝜇𝑟2
] 𝑅(𝑟) = 0   (1) 

 It would be helpful to incorporate dimensionless 

variables to make this more mathematically manageable. 

𝑟 = 𝜌𝛼,    𝛼 = √
ℏ

𝜇𝜔
 ,    𝜖 =

𝐸

ℏ𝜔
                        (2) 

Equation (3.8) can be expressed  

𝑑2𝑈(𝜌)

𝑑𝜌2
+
2𝜇

ℏ2
[2𝜖 −

ℏ2ℓ(ℓ + 1)

𝜌2
− 𝜌2] 𝑈(𝜌) = 0       (3) 

 By performing transformations 𝜌2 =  𝑠 and 𝑈(𝜌)  →
 𝜓(𝑠) in equation (3.9), we can obtain an equation by 

rewriting it in terms of s.  

𝑑2𝜓(𝑠)

𝑑𝑠2
+
1

2𝑠

𝑑𝜓(𝑠)

𝑑𝑠
+
−𝑠2 + 𝛽𝑠 − ℓ(ℓ + 1)

4𝑠2
𝜓(𝑠) = 0          (4) 

 In cases when the range of the variable s is 0 ≤  𝑠 ≤
 ∞. additionally, we employed the definition and derivative, 

respectively. 

𝑑2𝑈(𝜌)

𝑑𝜌2
= 4𝑠

𝑑2𝜓(𝑠)

𝑑𝑠2
+
1

2𝑠

𝑑𝜓(𝑠)

𝑑𝑠
                  (5) 

β2 = 2ϵ                                                  (6) 

To determine the pertinent polynomials, do the following 

�̃� = 1,   𝜎(𝑠) = 2𝑠, �̃� = −𝑠2 + 𝛽𝑠2 − ℓ(ℓ + 1)      (7) 

 Putting the polynomials in the provided equation 

(3.13) gives the polynomial 𝜋(𝑠) 

𝜋(𝑠) =
1

2
± √𝑠2 + (2𝑘 − 𝛽2)𝑠 + ℓ(ℓ + 1)             (8) 

 Setting Δ = 𝑏2 − 4𝑎𝑐 = 0  will solve the quadratic 

form problem beneath the square root sign of equation 

(3.14). This quadratic's discriminant equals zero. 

Δ = 4𝑘2 + 𝛽4 − 2𝑘𝛽2 − 4(ℓ(ℓ + 1)) = 0             ( 9) 

𝑘2 − 𝑘𝛽2 +
𝛽2

4
− 4 (ℓ(ℓ + 1) +

1

4
) = 0                (10) 

𝑘± =
𝛽2 ± √1 + 4ℓ(ℓ + 1)

2
                                 (11) 

 Equation (3.14) may be solved by substituting the two 

values of k from equation (3.16), yielding the four 

alternative forms of π(s). 

𝜋(𝑠)

=

{
 
 

 
 
𝑠 +

√1 + 4ℓ(ℓ + 1)

2
, 𝑓𝑜𝑟   𝑘+  = 𝛽

2 +
√1 + 4ℓ(ℓ + 1)

2

𝑠 −
√1 + 4ℓ(ℓ + 1)

2
, 𝑓𝑜𝑟 𝑘− =   𝛽

2 −
√1+ 4ℓ(ℓ + 1)

2

  (12) 

 

 For this value of π(s) in the range (0, ∞), one of the four 

values of the polynomial π(s) is just appropriate to achieve 

the bound-state solution a negative derivative [34]. 

Consequently, the best way to represent π(s) is determined 

to be; 

𝜋(𝑠) =
1

2
− 𝑠 +

√1 + 4ℓ(ℓ + 1)

2
                    (2.13) 

 For 𝑘− =  𝛽
2 −

√1+4ℓ(ℓ+1)

2
. By using 𝜋(𝑠) given in 

equation (3.13) and remembering �̃� = 1  we can obtain 

expression 𝜏(𝑠) = �̃� + 2𝜋(𝑠) to introduce  

𝜏(𝑠) = 2 + √1 + 4ℓ(ℓ + 1) − 2𝑠               (2.14) 

 And the derivative of this expression would be 

negative, i.e., 𝜏′(𝑠) = −2 < 0 where  𝜏′(𝑠)   represents 

derivation of  (𝑠) . The expression 𝜆 =  𝑘 − +  𝜋‘(𝑠) and 

𝜆𝑛 =
−𝑛𝜏′(𝑠)−𝑛(𝑛−1)𝜎′′

2
, gives𝜆 = 𝛽2 −

√1+4ℓ(ℓ+1)

2
− 1,  

𝜆𝑛 = 2𝑛. When we compare these expressions, 𝜆 =  𝜆𝑛, 

one can obtain the energy of the harmonic oscillator, 

𝛽2 −
√1 + 4ℓ(ℓ + 1)

2
− 1 = 2𝑛                 (2.15) 

 
𝐸

ℏ𝜔
= 2𝑛 + ℓ +

3

2
                                (2.16) 

For 3D harmonic oscillator 

𝐸 = ℏ𝜔0 (2𝑛 + ℓ +
3

2
)                           (2.17) 

In case of 2D harmonic oscillator  

𝐸𝑛,ℓ = ℏ𝜔0(2𝑛 + ℓ + 1)                           (2.18 



  

 

 Adv. Mater. Lett. | Issue (October-December) 2024, 24041762  [4 of 10] 

https://aml.iaamonline.org 

ANALYTICAL SOLUTION OF NON-

INTERACTING TWO ELECTRON 

Von Neumann entropy, a crucial parameter in quantum 

information theory, was utilized in this investigation [28] to 

examine intricate thermodynamic properties and magneto-

thermal properties in the presence of a magnetic field 

running parallel to the z-axis, creating an extra term in the 

consideration of two electrons locating at the center. The 

applied external magnetic field plays the role of a chemical 

potential. The Hamiltonian matrix is given as: 

𝐻

=

(

 
 
 
 

1

4
ℏ𝜔 + 𝑔∗𝜇𝐵𝐵 0               0                          0

 0               
1

4
ℏ𝜔         0                        0

0               
0              

0            
0           

−ℏ𝜔
1

4
0

           
         0

1

4
ℏ𝜔 − 𝑔∗𝜇𝐵𝐵)

 
 
 
 

 3.1 

 In actuality, the partition function encapsulates all 

information [36] about a physical system and is used to 

characterize its statistical characteristics at a specific 

inverse temperature [35,36]. Since its computational 

precision is essential to any statistical investigation of 

quantum systems and events [37], all thermodynamic 

observables may be computed as soon as the energy 

eigenvalues of the underlying physical system are known. 

This isn't the case, however, if one is interested in 

observable behaviors and has access to the system 

Hamiltonian, which must be diagonalized in order to 

acquire the z-direction. In this situation of  𝑆𝑧 = 0, the z-

component of the magnetic moment disappears for singlets 

and triplets, but it does not vanish for  𝑆𝑧 = ±1.  

 The energy term functionality expressed mathematical 

as Zeeman Effect 𝐸𝑠 = ±𝑔∗𝜇𝐵𝑆𝑧  leads to the 𝐸±
𝑡 =

1

4
ℏ𝜔𝑐±𝑔

∗𝜇𝐵𝐵𝑧 . Hence, only the energy splitting occurs for 

states with parallel spins; the other state is left degenerate.  

 Utilizing the reduced density matrix method is a tool 

for determining and probing information about the system 

through von Neumann entropy [38]. For the von Neumann 

entropy, begin with the thermal condition (based on its 

eigenstates) and the occupancy level (per dimer) to simulate 

the entropy as per dimer of a system. The applicability of 

the von Neumann entropy has eluded direct analytic 

continuation and a wider sense regime of relevancy than 

what might be anticipated from other methods [38]. That is 

why this study relied on its significance in contributing to 

providing all the information it intended to probe. 

 The probability of finding the system in an excited 

state does not vanish even at zero temperature; the density 

operator does not reduce to the projection onto the non-

degenerate ground state of the system and thus does not 

describe a pure state with statistical entropy equal to zero. 

This makes it necessary to calculate the entropy per dimer 

for the quantum case, also known as the von Neumann 

entropy. The von Neumann entropy expresses the 

uncertainty regarding the measurement result. The partition 

function (per dimer) is as follows when we begin with the 

thermal state (based on its eigenstates): 

𝑧𝜌 =
1

𝑧

(

 
 

𝑒𝛽ℏ𝜔 0 0         0
0    1 0           0
0    0 𝑒−𝛽ℏ𝜔𝑩 0

      0      0 0       𝑒𝛽ℏ𝜔𝑩

)

 
 
         (3.2) 

Where  

z = tr(zρ) = eβℏ𝜔 + 1 + 2 cosh(βℏ𝜔𝐁)           (3.3) 

 Where we have introduced an energy offset of 
𝐽

4
 the 

triplet and singlet energies become  𝐸𝑜𝑓𝑓𝑠𝑒𝑡
𝑠 = −𝐽 and  

𝐸𝑜𝑓𝑓𝑠𝑒𝑡
𝑡 =  0 ). Note that ρ is independent of the offset since 

we normalize it to  𝑡𝑟(𝜌 ) =  1. 
 Three distinct degrees of occupancy of the energy state 

were seen in the presence of a magnetic field, although the 

singlet states remained unchanged. The lowest triplet is the 

only one we take into account. components corresponding 

to𝑆𝑧  =  1. Thus, the spin contribution to the Zeeman shift 

for a spin-singlet and for a spin-triplet state may be 

respectively written as 

𝐻𝑠 = 𝑔𝜇𝐵𝐵𝑆𝑧                                         (3.4) 

 Evaluating free energy is a central endeavor in 

magneto-thermodynamics [39]. It requires continuous 

efforts to harvest more thermo-magnetic effects, such as 

from correlation-dependent phenomena due to exposure to 

independent fields like external magnetic fields, 

temperature, potential confinement strength, and pressure. 

 When utilizing the free energy per dimer for the 

quantum system 

𝐹(𝑇, 𝐵) = −
1

𝛽
log(𝑒𝛽ℏ𝜔 + 1 + 2 cosh(𝛽ℏ𝜔𝑩))       (3.5) 

 For the quantum situation, the magnetic susceptibility 

χ and its dependency on B at various temperatures are 

described, and the magnetization m is calculated. In the last 

10 years, a lot of research has been done on such systems' 

spin magnetization [40]. 

 The magnetization's ability to provide details about the 

multiparticle dynamics of the dots under an external 

magnetic field is what makes it interesting [41]. Despite the 

interesting physics involved, studying the magnetic 

characteristics of quantum dots can provide us with more 

tools to manipulate electronic magnetism in nanoscale 

structures.  

𝑚(𝑇,𝑩) = (
𝜕𝐹(𝑇, 𝑩)

𝜕𝑩
)
𝑇

=
2ℏ𝜔 sinh (𝛽ℏ𝜔𝑩)

𝑒𝛽ℏ𝜔 + 1 + 2 cosh(𝛽ℏ𝜔𝑩)
     (3.6) 

The susceptibility for the quantum case is given by: 

𝜒(𝑇,𝑩) =
𝜕𝑚(𝑇, 𝑩)

𝜕𝑩

= 2𝛽𝜇𝐵
2𝑔∗2

2 + (1 + 𝑒𝛽ℏ𝜔)𝑐𝑜𝑠h (𝛽ℏ𝜔𝑩)

(𝑒𝛽ℏ𝜔 + 1 + 2 cosh(𝛽ℏ𝜔𝑩))2
                         (3.7) 
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DISCUSSION AND RESULT  

Non-interacting Parabolic Confined Electron Quantum 

Dots. 

In LDSN, using the NU method, the energy eigenvalue  

and the wave functions of an electron confined in a 2D 

quantum dot are calculated vibrational [42]. This study 

specially considered the NU method to obtain  

eigenvalues under exposure to external fields and  

extended it to solve thermodynamic properties  

employing partition functions in the realm of occupancy 

states and spin interaction in the realm of magnetic field and 

confinement strength (optical energy). Additionally, 

magneto-thermal properties are solved. We used the 

material parameters of GaAs QD. A few electrons trapped 

in parabolic confined potential produce a rich variety of 

physical phenomena in a perpendicular magnetic field [43]. 

The numerical value of material parameters for a GaA is a 

typical value. ℏ𝜔0 = 3 𝑚𝑒𝑉,  𝜇𝐵 =
ℏ𝑒

2𝜇
= 0.87 𝑚𝑒𝑉/𝑇  is 

the effective Bohr magneton.  The orbital degeneracies at B 

= 0 are lifted in a magnetic field in the presence of magnetic 

field the cyclotron energy (ℏ𝜔𝑐 = 1.76 𝑚𝑒𝑉 ) for 

magnetic field (B=1 T). Experimental investigation 

subjected to an external magnetic field and electrostatic 

confinement potential, the singlet-triplet is altered in 

relation to the energy splitting and spin relaxation time, 

which shows a non-monotonic dependence [44]. That 

highly agreed with our theoretical study the correlation of 

parameters exhibited non-linearity dependence. In 

comparison an experimental work with that theoretical 

study it is simply fundamental physical mechanism is 

captured by a straightforward theoretical model that is 

developed. 

 When it comes to information theory or best one 

important theme that unites theories of optimization is 

control theory of the sciences from a free-energy  

approach. As a result, the optimized free energy  

maintains the expected utility and expected value of 

incentives. This demonstrates a surprise in both the 

estimated cost and the forecast error. According to the free 

energy principle, the amount is optimized, implying that 

free energy framework work could lead to a unification of 

global brain theories [45]. Our findings demonstrate that the 

strength of the confinement potential and the external 

magnetic field both improve disorder manipulation 

(minimization); as a result, free energy is optimized since 

the frequency of the system is affected in both scenarios. 

When exposed to a strong magnetic field and confinement 

potential, the relationship between magnetic susceptibility 

and the optimum free energy curve is linear and tends to be 

shorter. 

 The results presented here, while not comprehensive, 

are based on accurate answers due to the parabolic 

confinement nature of our system, environment, and 

confinement strength. This facilitates the discovery of 

significant physical characteristics that are hidden from 

view when depending just on widely used perturbative  

or approximative techniques, including Markovian 

assumptions. Additionally, it makes it possible to rule out 

incorrect predictions that result from using inaccurate 

approximations for regimes that are beyond their scope. 

 

Fig. 1. Susceptibility (meV T2⁄ ) as function of external magnetic fields 

(Tesla) with various confinement potentials  ℏω = 0.3 meV, ℏω =
0.6 meV and ℏω = 0.9 meV, constant temperature T=5 K. 

 It is demonstrated in Fig. 1 by the observed 

phenomenological influence of cyclotron frequency that 

there is a field-tuned susceptibility between thermally 

populated excited magnetic states. The spin states  

involved in the tuning process as well as the variation in 

confinement potential and strength potential at 5 K have 

been determined and it shown good agreement with [46].  

Between the signs of the susceptibility's second derivatives 

with respect to temperature and field, a consistent 

relationship is seen. 

 It is demonstrated in Fig. 1 by the observed 

phenomenological influence of cyclotron frequency that 

there is a field-tuned susceptibility between thermally 

populated excited magnetic states. The spin states involved 

in the tuning process as well as the variation in confinement 

potential and strength potential at 5K have been 

determined. Between the signs of the susceptibility's second 

derivatives with respect to temperature and field, a 

consistent relationship is seen. As depicted in Fig. 1, 

susceptibility increases at sufficiently low external 

magnetic fields. At zero magnetic field intensity there is 

static susceptibility, which increases with increment of 

confinement potential. However, as magnetic field  

intensity increases the magnitude of susceptibility  

increases and reaches its peak value and decreases 

monotonously for a given value of confinement potential 

value the peak value of susceptibility shift toward high 

magnetic field intensity. 
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 The simulation result shown in Fig. 2 is from equations 

(3.5) and (3.7). In contrast to free energy as a function of 

optical energy (confinement potential), free energy as a 

function of susceptibility exhibits a non-linear relationship. 

For lower confinement potential, free energy possessed the 

highest value. As potential confinement increases, free 

energy linearly begins increases slower, but magnetic 

susceptibility increases quicker until it reaches its 

maximum value. Meanwhile, both magnetic susceptibility 

tends to decreases and free energy again linearly increases 

until they reach their cut-off value with increments of 

confinement potential. From Fig. 2, one can observe that in 

the case of sufficiently low confinement potential strength 

the minimum value of free energy and maximum value 

magnetic susceptibility exhibited. At sufficiently high 

confinement potential free energy and susceptibility shows 

independency on magnetic field.  

 

 

Fig. 2. (a) Illustration in 3D and (b) 2D Free energy (arb.unit) versus 

Susceptibility (meV/T2) as function of confinement potential (ℏω = 0 −
10 meV) for various magnetic field strength (B=4 T, B=6 T, B=8 T) in 
constant value of temperature (T=10 K). 

Table 1. Statistical data show the correlation curve of magnetic 
susceptibility versus free energy. 

Mag. 

Field  

M. Susceptibility 

(𝒎𝒆𝑽 𝑻𝟐)⁄  

Free energy (arb. unit)  

Mini. 

value 

Max. 

value 

Range  Mini. 

value 

Max. 

value 

Range  

4 T 0.6802 0.8052 0.125 2.425 13.47 11.04 

6 T 0.6802 0.8052 0.1249 3.249 13.47 10.22 

8 T 0.6804 0.8052 0.1248 4.19 13.47 9.278 

 

 
Fig. 3. (a) Illustration 3D and (b) 2D Free energy (arb.unit) versus 

Magnetization (meV/T) as function of confinement potential (ℏω = 0 −
10 meV) for various magnetic field strength (B=4 T, B=6 T, B=8 T) in 
constant value of temperature (T=10 K). 

 The result in Fig. 3(b) is from simulated solution of 

combination of equations (3.5) and (3.6), the minimum 

value free energy is observed at lower confinement 

potential since the effect of quantum confinement induced 

strain in quantum dots is significant.  However, the 

magnetization electrons exhibits lower possible value due 

degrees of freedom not exposed to minimum alignment 

forces. Meanwhile, as confinement potential increases, free 

energy increases even magnetization shows a decrement 

until it reaches its cut-off value as potential confinement 

increases. From Fig. 3(b), one can observe that the 

variation of magnetic field put impact the at reasonably low 

confinement potential in both cases for free energy and 

magnetization. The value for magnetization becomes 

merged as confinement potential becomes stronger external 

magnetic fields is more insignificant than for weak 

confinement potential. 
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Fig. 4. (a) illustration 3D and (b) 2D, Free energy (arb.unit) as function of 

Susceptibility (meV/T2) dependence on external magnetic field (B = 0 −
20 T) for various confinement potential strength (ℏω = 3 meV, ℏω =
6 meV and ℏω = 9 meV) in constant value of temperature (T=10 K). 

Table 2. Statistical data correlation of magnetic susceptibility between 

free energy as function magnetic fields with various confinement 
potentials.  

Conf. 

potential 

M. susceptibility 

(𝒎𝒆𝑽 𝑻𝟐)⁄  

Free energy (arb. unit) 

Min. 

value  

Max. 

value 

Range  Min. 

value 

Max. 

value 

Range  

3 meV 0.6825  0.8052  0.1227 4.143 10.32 6.173 

6 meV 0.6812 0.8052 0.1241 8.084 10.47 2.386 

9 meV 0.6802 0.752 0.07173 12.12 12.34 0.2213 

 Table 2 Coincide with Fig. 4 the range magnetic 

susceptibility and free energy curve is broader in case of 

lower confinement potential. In case susceptibility saturated 

quickly due to strong confinement before attaining its 

maximum value. The dominance of magnetic field beside 

confinement potential optimize for shortest interval.  

 As depicted in Fig. 4(b), the correlation of two 

dependent variables, free energy and susceptibility, behaved 

differently based on confinement potential as a function of 

magnetic fields. As one can observe from Fig. 4.4, for the 

confinement potential (ℏ𝜔 = 3 𝑚𝑒𝑉) the free energy 

decreases for an increment of magnetic susceptibility and 

turned back to its critical minimum value. Moreover, the 

magnitude of free energy increases as value of confinement 

potential increases.  As the magnetic field increases and 

magnetic susceptibility reaches critical maximum value, then 

turned back, and both free energy and susceptibility decrease 

until they reaches their critical minimum values even if the 

external magnetic field kept increasing. For the value (ℏ𝜔 =
6  𝑚𝑒𝑉) as Fig. 4(b), shows both free energy and 

susceptibility linearly increase as the magnetic field intensity 

increases until magnetic susceptibility reaches its maximum 

critical value, and then susceptibility begins to decrease, but 

free energy keeps increasing as magnetic field strength 

independently increases. In the case of (ℏ𝜔 = 9 𝑚𝑒𝑉), both 

free energy and magnetic susceptibility show proportional 

increases for a very small range and reach their cut-off 

values. The uniqueness of this result is due to the 

supplementary effects of magnetic field and confinement 

strength in quantum systems. The win-win dominance of CP 

and external magnetic field enhances the proportional 

increment of free energy and magnetic response within a 

certain limit. On the other hand, the dominance of the 

magnetic field over CP exhibited two phases of increased 

magnetic response. That possessed the maximum value with 

respect to the record of the decrease of free energy in both 

phases of susceptibility. According to the research, up has the 

lowest total energy barrier, and the smoothest magnetization 

reversal was accomplished [47]. 

 As Fig. 5 shows, the strong confinement potential (CP) 

promotes saturation of magnetization in the shortest range in 

the correlation of free energy. Fig. 5 showed free energy as a 

function of magnetization exhibited in the long-range 

correlation in the case of lower confinement potential (ℏ𝜔 =
3 𝑚𝑒𝑉) since it allowed the domination of the pinning 

phenomenon for free energy and magnetization increased. 

Even after magnetization is saturated, there is free room for 

free energy to be recorded. A stronger confinement value 

quantitatively dominates the pinning phenomenon that 

hinders free energy, and the magnetic domain is also pinned; 

therefore, magnetization is only responsive in a very short 

range with respect to free energy. 

 

 

Fig. 5. (a) illustration in 3D and (b) in 2D Free energy (arb.unit) versus 

Magnetization (𝑚𝑒𝑉/𝑇) as function of external magnetic field (𝐵 = 0 −
20 𝑇 ) for various confinement potential strength (ℏ𝜔 = 3 𝑚𝑒𝑉, ℏ𝜔 =
6 𝑚𝑒𝑉 𝑎𝑛𝑑 ℏ𝜔 = 9 𝑚𝑒𝑉) in constant value of temperature (T=10 K). 
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 The tendency to resist more disorder in the internal 

system is measured or calculated through free energy. 

Therefore, determining the optimal free energy probe over 

the entire state of the system. Especially the susceptibility 

of the material to its environment. That is why we place a 

great emphasis on simulating the free energy of a system 

under different external parameters as well as its correlation 

with other material properties. 

 

 

Fig. 6. (a) 3D and (b) 2D: illustration of Susceptibility (meV/T2) as 

function of Magnetization (meV/T) dependency on external magnetic 

field (B = 0 − 20T ) for various confinement potential strength (ℏω =
0.3 meV, ℏω = 0.6 meV, ℏω = 3 meV, and, ℏω = 6 meV ) in constant 

value of Temperature (T = 10 K). 

Table 3. Statistical data the correlation magnetization between magnetic 

susceptibility as function magnetic field. 

Conf. 

potential 

(meV) 

Magnetization (𝒎𝒆𝑽/𝑻) Magnetic Susceptibility 

(𝒎𝒆𝑽 𝑻𝟐)⁄  

Mini. 

value 

Max. 

value 

Range  Mini. 

value 

Max. 

value 

Range  

0.3 0 0.3827 0.3827 0.6804 0.8052 0.1248 

0.6 0 0.3826 0.3826 0.6804 0.8052 0.1248 

3 0 0.381 0.381 0.6825 0.8052 0.1226 

6 0 0.3339 0.3339 0.6812 0.8052 0.124 

 In the account of several magnetization process features, 

this study is concerned with the high field differential 

susceptibility (paramagnetic process) type. More thorough 

ideas on the cause of the magnetization anisotropy were 

developed as a result of further research Fig. 6(b) displays 

both susceptibility exhibiting the highest value and 

magnetization linearly increasing in the realm of weak 

confinement potential at sufficiently low temperatures. 

 In Fig. 6(b), in cases of strong confinement energy, the 

record shows that both susceptibility and magnetization 

rose, and susceptibility attained its maximum and turned to 

decreasing even though magnetization kept increasing. The 

record of different peaks of susceptibility is observed for 

different values of confinement energy since QD is very 

sensitive to confinement potential and has tremendous 

variations in oscillatory strength and its role in determining 

magnetic response. From Fig. 4.6, one can observe that 

temperature affects magnetic susceptibility more than 

magnetization. 

 As Fig. 6(b) shows, in the asymmetric behavior of 

magnetic susceptibility and magnetization, the maximum 

possibility of a magnetic response characterizing 

susceptibility saturation begins to decrease even though 

magnetization keeps increasing, thus increasing the 

intensity of the material's response to an external magnetic 

field is characterized by spin orientation, while the former 

is the quickest to reach its maximum value.  

 An alternate crossover between the spin-split electron 

levels in the energy spectrum is related to the study of 

sudden changes in magnetization and susceptibility at low 

magnetic fields, mostly because of the spin-orbit interaction 

that has been figured out [48]. The extended response curve 

for magnetic susceptibility and magnetization is shown at 

the lowest temperature, as seen in Fig. 7(b). 

 

 
Fig. 7. (a) illustration in 3D and (b) in 2D Susceptibility (meV/T2) versus 

Magnetization (meV/T) as function of confinement potential strength 

(ℏω = 0 − 10 meV ) for various Temperature (T = 10 K, T =
15 K and T = 20 K ) in constant value of magnetic field (B = 2 T). 
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 One can observe from Fig. 7(b) the strongest 

temperature value dominates the responsiveness of their 

effect of existence for both magnetization and magnetic 

susceptibility to be quenched. The confinement strength 

enhanced both susceptibility and magnetization, as shown 

in Fig. 7(b). The value of susceptibility was recorded in 

advance in cases of lower temperatures. Similarly, 

magnetization exhibited a wider range at low temperatures. 

This signifies the coercively of nanoparticles in the thermal 

activation of electron moments over the anisotropy barrier 

in the lower temperature range. 

 From Table one can observe the range of magnetic 

susceptibility and magnetization become shorter as value of 

temperature increases. Thus, thermal agitation put an 

impact on minimizing magnetic response. Both Magnetic 

response and magnetization value show highly frequented 

in case of lower confinement potential. As confinement 

potential increases both magnetic response and 

magnetization linearly increase until maximum value of 

magnetic response reaches its critical maximum value and 

turned back.   

 
Table 4. Statistical data correlation of magnetization between magnetic 
susceptibility as function confinement potential with various temperature 

for (B=2 T). 

Temperature Magnetization M. susceptibility 

Mini.  

value 

Max. 

value 

Range Mini. 

Value 

Max. 

value 

Range  

10 K 7.053 × 10−6 0.1596 0.1596 0.6802 0.8052 0.125 

15 K 2.094 × 10−5 0.1102 0.11 0.454 0.5785 0.1245 

20 K 1.05 × 10−3 0.08366 0.0826 0.3434 0.4651 0.1217 

 

CONCLUSION  

The Nikiforov-Uvarov method is utilized to solve the QD 

Schrödinger equation and calculate Eigen energies' spectra 

between two electron GaAs quantum dots with harmonic 

parabolic potential confinement, considering independent 

variables: the magnetic field strength (B), confining 

potential (ℏ𝜔), and temperature (T). In this work, we have 

shown the interrelation of free energy, magnetization, and 

susceptibility with the dependence of the external magnetic 

field, confinement potential, and temperature. Considering 

the possible statistical occupancy of the energy level, this 

accounts for the presence of the spin (𝑆𝑧) and possible 

degeneracy. We have studied the interdependence of free 

energy, magnetic susceptibility, and magnetization on the 

external magnetic field, temperature, and confining 

potential of the parabolic oscillatory confinement of two 

non-interacting quantum dots. We investigated the 

maximum possible peak and the minimum value at which 

the cut-off magnetic response of the system was indicated. 

We investigated the interrelated dependent variables 

experience and their determining effects on magneto-

thermal properties in a limited interval.  

 From a theoretical point of view, many studies 

investigated the dependence on external parameters without 

considering the interdependence of thermo-statistical and 

magneto-thermal behaviors. In contrast, comprehensive 

information about the system is needed to put together this 

guide to the analysis and interpretation of the interrelation, 

taking into consideration free energy as a functional bridge 

of magnetic and statistical thermodynamic properties at the 

same pace. This study investigate the interrelationship 

between intrinsic properties depending the external 

parameters. Since the confinement length, magnetic field, 

and temperature are shown to directly rely on these thermal 

and magnetic variables, the system's parameters can be 

adjusted to suit a variety of applications. Thus, in the era of 

scientific technology, information is required to be stored 

and probed from a scientific point of view, and the systems 

cannot be found in an isolated external parameters. The 

significance of our study is pronounced; further 

investigation will be required due to the higher variability 

of material parameters to be instrumentalized as a gauge to 

probe the internal properties of the system.  

 The discontinuity of magnetic response shows the 

physical boundary conditions requiring great attention to be 

investigated for different nanostructure materials. It 

requires intensive collaboration between chemists, 

physicists, and materials scientists to better understand the 

relationship between magnetic characteristics and 

nanostructure by investigating both the fundamentals and 

possible applications [49] 
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