RESEARCH

Effects of Initial Surface Roughness and Sliding Speed Study on the Tribological Characteristics of AA6061 and CuZn37Pb2 Alloys

Bougoffa M. Seyf Eddine1,* | Sayhia Benchaa2

1Laboratory of Materials Technology, Department of Materials Science, Université de Science et de Technologie Houari Boumediene (USTHB), Bp 32 El Alia 16111 Bab Ezzour, Algiers, Algeria

2Laboratoire de Rayonnement et Plasmas et Physique des Surfaces (LRPPS), Faculté des Mathématiques et des Sciences de la Matière, Université de Ouargla, 30000 Ouargla, Algeria

*Corresponding author:
E-mail: mbougoffa@usthb.dz

ABSTRACT

The paper examines the influence of initial surface roughness and sliding speed on friction and wear behavior of AA6061 aluminum alloy and brass alloy (CuZn37Pb2) under dry contact using a CSM tribometer. Surface roughness of materials studied were measured using optical profilometer. Rough surfaces (Ra=0.37 - 1.33 μm) were prepared on two materials: AA6061 and CuZn37Pb2 alloy. Track width, wear rate, and wear loss values were assessed and contrasted with changes in coefficient of friction values at various starting surface roughness and sliding speeds. Experiments are conducted at sliding speed 0.15;0.24;0.35 and 0.48 m/s. wear track diameter 4;6;8;10 mm. Results show that wear loss, wear rate and track width of CuZn37Pb2 and AA6061 increase at high initial surface roughness and speed but the value of friction coefficient decreases. Various SEM analysis of the wear trace and worn surfaces for each alloy at different sliding speed were analysed and compared.

KEYWORDS

Initial surface roughness, sliding speed, friction coefficient, wear loss, wear rate.

INTRODUCTION

The researched alloys, CuZn37Pb2 and AA6061, are frequently employed in applications requiring excellent wear resistance. It is well known that the tribological behavior of the materials in contact depends on a number of interrelated tribological characteristics [1-8]. The tribological behavior of alloys and materials needs to be understood and predicted in order to be used in modern industrial applications. It’s important to research the effects of the various factors that affect friction and wear behavior, including normal force and speed. Numerous tests have been carried out [9-17] to learn more about the characteristics of AA6061 and CuZn37Pb2. Amid relative movement of two surfaces, different kinds of wear mechanisms, including adhesion wear, fatigue wear, delimitation wear, abrasion wear, erosive wear, and destructive/oxidative wear have been significantly reported [14-16]. According to Liu et al. [17], the wear volume and load for laser-prepared Al-Gr composites with 1.55 wt% Gr are directly correlated. For the prediction of the material flow and temperature distribution on the specimen at the ring upsetting, see Nagpal et al. [18]. Li et al. [19] have examined the effects of lubricant on friction coefficients according to temperature. Mahrenholz et al. investigated how roughness affected several 3D models and demonstrated the impact of asperity density distribution on the normal compliance law [20].

However, as wear is an evolutionary and irreversible event, the tribological behavior of these materials is not well understood, which makes our investigation in the laboratory rather unique. There are numerous ways to test for sliding wear [21]. The films present at the contact play a role in the tribological behavior of the alloy pairs [22].

This study suggests examining the friction and wear behavior of CuZn37Pb2 and AA6061 in this setting. These alloys have good tribological properties, including resistance to oxidation and wear. The information pertaining to the changes in the metallographic structure happening on the surface and volume, when these two materials have a distinct microstructure but are machined with a similar level of roughness and hardness, is yet unknown. We have hurdles in filling this knowledge gap. This study helps to establish the first cornerstone for connecting academic knowledge to practical experience in the workplace.
In order to improve performance and quality in industry, this study aims to assess the dry sliding wear behavior of AA6061 and CuZn37Pb2 by performing pin-on-disc tests with varying loads, speeds, and roughness.

EXPERIMENTAL PROCESS

Trial device and materials

Tests for dry sliding wear were performed on a tribometer made by CSM. CuZn37Pb2 and AA6061 were utilized as the disc. While the ball was made of 100Cr6 martensitic steel (52100). For situations where excellent mechanical performance is sought, martensitic stainless steels are typically used [23-25]. The samples were polished with 240, 600, and 1200-grit silicon carbide sheets to provide the desired characteristics and surface finish, while the balls were used in their soft, as-received form.

As a disc, CuZn37Pb2 and AA6061 are employed. While the ball was made of 100Cr6 martensitic steel (52100). For situations where excellent mechanical performance is sought, martensitic stainless steels are typically used [22-24]. Table 1 displays the information.

<table>
<thead>
<tr>
<th>Type</th>
<th>Alloys</th>
<th>Hardness</th>
<th>Surface Roughness Ra[μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>AA6061 aluminum alloy</td>
<td>150±0.5 HB</td>
<td>0.48-0.76-1.33</td>
</tr>
<tr>
<td></td>
<td>brass (CuZn37Pb2)</td>
<td>63.2±0.5 HRB</td>
<td>0.37-0.62-1.24</td>
</tr>
<tr>
<td>Ball</td>
<td>AISI 52100 steel</td>
<td>780 HV30</td>
<td>0.09±0.003</td>
</tr>
</tbody>
</table>

Experimental procedure

Wear loss of the CuZn37Pb2 and AA6061 sample are considered as a wear parameter evolving in function of time. The wear rate were calculated using the expressions [26,27]. The detail experimental conditions are shown in Table 2.

<table>
<thead>
<tr>
<th>N°</th>
<th>Parameters</th>
<th>Unit</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal load</td>
<td>N</td>
<td>3 - 5 - 8 - 10</td>
</tr>
<tr>
<td>2</td>
<td>Sliding speed</td>
<td>m/s</td>
<td>0.15 - 0.24 - 0.35 - 0.48</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

In both research and practical applications, initial surface roughness in dry conditions is frequently disregarded. There is a dearth of literature on early surface roughness in friction and wear. The coefficient of friction found in this investigation generally agrees to some extent with other findings [19]. In this study, the effects of surface roughness and sliding speed on tribological properties of AA6061 and CuZn37Pb2 are discussed. Wear loss and track width have been associated with variations in the coefficient of friction in dry sliding wear at various beginning surface roughness and sliding speed. Experiments are carried out with wear track diameters of 4.6-8-10 mm at sliding speeds of 0.15-0.24-0.35 and 0.48 m/s.

![Fig. 1. (A) View of the CSM Tribometer and (B) pin-on-disc configuration](image1)

![Fig. 2. COF of AA6061 with time at different initial surface roughness](image2)

![Fig. 3. COF of CuZn37Pb2 with time at different initial surface roughness](image3)
contact. With an increase in sliding speed and normal load, the friction coefficient of the materials AA6061 and CuZn37Pb2 decreased. This can be due to a change in the shear rate, which could affect the mechanical and tribological properties of the materials in contact. These materials' strength improves with increasing shear strain rates [22], which reduces the real area of contact and the coefficient of friction during dry sliding.

![Fig. 4](https://example.com/fig4.png)

Fig. 4. Coefficient of friction of AA6061 with time at different normal load.

![Fig. 5](https://example.com/fig5.png)

Fig. 5. Coefficient of friction of CuZn37Pb2 with time at different normal load.

![Fig. 6](https://example.com/fig6.png)

Fig. 6. Friction coefficient values of AA6061 with different sliding speed and initial surface roughness.

![Fig. 7](https://example.com/fig7.png)

Fig. 7. Friction coefficient value of CuZn37Pb2 with sliding speed and initial surface roughness.

Fig. 8 displays the coefficient of friction for AA6061 and CuZn37Pb2 during dry sliding wear at various sliding speeds, experiment carried out at a wear track diameter of 6 mm. According to the findings, the friction coefficient for AA6061 and CuZn37Pb2 decreases from 0.49 at 0.15 m/s to 0.42 at 0.48 m/s and from 0.40 at 0.15 m/s to 0.28 at 0.48 m/s, respectively. It is obvious that CuZn37Pb2 exhibits significantly lower friction than AA6061 under the same circumstances.

![Fig. 8](https://example.com/fig8.png)

Fig. 8. Friction coefficient curves of CuZn37Pb2 and AA6061 for: different sliding speed, tests conducted at 6 mm wear track.

Fig. 9 and **Fig. 10** show the view of samples after wear test, visibly it can see the traces of wear with different diameters, we conclude that the studied material does not show the same tribological response.
Fig. 11 displays the coefficient of friction measured during dry sliding wear of CuZn37Pb2 and AA6061 at various wear track sizes. The outcomes supported the theory that friction and wear on the surface can be consistently produced by the strategy of using concentric wear tracks of various diameters [23]. It has been demonstrated that the coefficient of friction curves hardly alter and that the diameters of the track wear have no discernible relationship to the coefficient of friction’s variation.

Fig. 12 and Fig. 13 show the view of samples (CuZn37Pb2 and AA6061) after wear test, visibly it can see the traces of wear with different diameters, we conclude that the studied material does not show the same tribological response.

Wear analysis

The graphs (Fig. 14 and Fig. 15) display the wear loss values for CuZn37Pb2 and AA6061 at various speeds and roughness levels. The findings demonstrate that for two alloys, wear loss rises at high sliding speeds and high start surface roughness values, whereas it falls at low sliding speeds and low initial surface roughness values. For AA6061, a sliding speed of 0.48 m/s and an initial surface roughness of 1.33 m produce the higher wear loss. For CuZn37Pb2, a sliding speed of 0.48 m/s and an initial surface roughness of 1.24 m yield the higher wear loss. The outcomes are mostly in line with what the authors discovered [17,18].
Plots of the wear rates of CuZn37Pb2 and AA6061 at various initial surface roughness and sliding speed are shown in Fig. 16 and Fig. 17. According to the findings, wear rates for two alloys increase at high beginning surface roughness and drop at high sliding speeds, whereas wear rates increase at low sliding speeds and reduce at low starting surface roughness values. For AA6061, a sliding speed of 0.15 m/s and an initial surface roughness of 1.33 m yield the greater wear rate. For CuZn37Pb2, a sliding speed of 0.15 m/s and an initial surface roughness of 1.24 m yield the greater wear rate.

The effects of normal load and sliding speed on the coefficient of friction, wear loss, and track width of AA6061 and CuZn37Pb2 are depicted in Fig. 18 to Fig. 21. These statistics show that the track width, wear loss, and coefficient of friction are all influenced by the load being applied and the sliding speed. According to the findings, the track width increases with wear loss when the usual load or sliding speed increases, yet the coefficient of friction decreases. The findings are remarkably in line with what has been discovered through study [19,20].

Worn surface analysis

Fig. 22 depicts the surface morphology of CuZn37Pb2 and AA6061 after various sliding speeds. Fig. 22 for CuZn37Pb2 (A) and AA6061 (D) shows that under a modest sliding speed of 0.24 m/s, there were clear cut lines and grooves on the worn surface as well as a flake stripping layer in the local structure. This suggests that abrasive wear, a little spalling wear, and some wear debris with an abrasive action are the main types of wear that occur under such sliding speeds. Wear debris specifically its chemical makeup is what causes the presence of oxides. Studies have revealed that when debris oxidizes during contact, the friction coefficient increases noticeably. Spinler [27] was aware that the coefficient of friction increases significantly when the contact surfaces are degraded and that it is often high when surfaces are quite rough. The range of the spalling area also expanded as the sliding speed increased, increasing the width and depth of the grooves. Figure 22 for CuZn37Pb2 (C) and AA6061 illustrates the extreme plastic deformation of the wear surface at 0.48 m/s sliding speed (F). The quantity and scope of plastic deformation and material peeling will therefore rise with an increase in sliding speed, resulting in roughened wear surfaces and significant wear loss.
The authors would like to acknowledge: Scientific Research Center of Physico-Chemical Analysis (CRAPC).

AUTHOR’S CONTRIBUTIONS

Authors have no competing financial interests.

REFERENCES

4. Lang, Andrej; Klüppel, Manfred; Influences of temperature and load on the dry friction behaviour of tire tread compounds in contact with rough granite, Wear, 2017, 380-381, 15-25.
11. Ma, X.P.; Wang, L.J.; Liu, C.M.; Subramanian, S.V.; Microstructure and properties of 13 Cr 5 Ni 1 Mo 0.025 Nb 0.09 V 0.06 N super martensitic stainless steel, Mater. Sci. Eng. A, 2012, 539, 271-279.

This article is licensed under a Creative Commons Attribution 4.0 International License, which allows for use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is provided, and changes are indicated. Unless otherwise indicated in a credit line to the materials, the images or other third-party materials in this article are included in the article’s Creative Commons license. If the materials are not covered by the Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you must seek permission from the copyright holder directly.

Visit http://creativecommons.org/licenses/by/4.0/ to view a copy of this license.