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Introduction 

Material selection under condition of multi object is in fact 

a multi object optimization problem (MOOP), which 

involves the simultaneous satisfaction of multi material 

attributes. Actually, many problems are composed of 

multiple objects in daily life, which conflict and influence 

each other. It often encounters the optimization problem of 

arranging multiple tasks as best as possible at the same time 

in a given condition. That is, a multi-objective optimization 

problem. For example, when a manufacturer produces a 

product, it requires not only less investment, fewer workers, 

and lower costs, but also requires high work efficiency and 

high profits. This is a typical MOOP. In general, the sub-

goals in the MOOP are generally contradictory, it is 

impossible to fully optimize each sub-goal to its own 

optimal value at the same time. The ultimate goal is to 

achieve a compromised optimization. The solution is a 

satisfactory solution in the overall consideration of the 

multiple objects.  

 The obvious feature of this optimization problem is 

that more than one optimization object is involved to be 

processed at the same time. MOOP has been one of the 

main research areas since the early 1960s, and also attracted 

more attentions of researchers from different backgrounds.  

60 years past since the early pioneer works in MOOP, 

in order to obtain a systematic result many investigators 

have proposed a series of methods to deal with this problem 

[1-5], for example, the methods of Pareto solution,  

AHP (Analytical Hierarchy Process), MOORA (Multi-

Objective Optimization on the basis of Ratio Analysis), 

VIKOR (Vlšekriterijumsko KOmpromisno Rangiranje), 

and TOPSIS (Technique of ranking Preferences by 

Similarity to the Ideal Solution), etc.  

 However, all above methods for MOOP adopt 

"additive" algorithm after parameterization and 

normalization of the evaluation indicators generally; some 

contains artificial factors [1-5]. From the perspective of 

"simultaneous optimization of multiple objects", the 

"additive" algorithm is equivalent to taking the form of 

"union" in the eyes of an analyzer of probability theory, 

which is the inherent shortcoming [6].  

 Contrarily, from viewpoint of probability theory, the 

general approach for "simultaneous optimization of 

multiple objects" should take the form of "intersection" of 

the multiple evaluation indicators [6]. On the other hand, 

since the introduction of artificial factors in some 

algorithms, the relevant approaches cannot be seen as a 

fully quantitative method in some sense. Therefore, 

comprehensive study in materials selection is still needed 

so as to develop an overall approach quantitatively. 

Multi object optimization in material selection involves the satisfaction of optimizing the multi 

attributes simultaneously, which analogically corresponds to the simultaneous appearance of the 

event of the multi attributes in the viewpoint of probability theory, thus the optimization of multi – 

object becomes the assessment of the “joint probability” of these multi – attribute problem. 

Furthermore, the preferential degree of the candidate material in the material selection is reflected 

by the concept of preferential probability, and a quantitative approach for evaluating the partial 

preferential probability of each material attribute indicator and the total (joint) preferential 

probability of candidate material in the material selection is proposed on basis of probability 

theory correspondingly. In the approach, all material attribute indicators are divided into beneficial 

or unbeneficial types; each material attribute indicator of the candidate contributes one partial 

preferential probability linearly to its authorized material upon its nature of whether beneficial or 

unbeneficial type merely; the product of all partial preferential probabilities of a candidate makes 

its total preferential probability, which is the final unique index in the material selection decisively; 

the candidate materials can be ranked according to their total preferential probabilities, which 

determines the result of the selection. Furthermore, the condition of discrete input variables and 

the objects is extended to the case of continuous input variables and the objects. Some examples 

are given in detail, satisfied results are obtained.  
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 As to simultaneous optimization of multi- object 

problem, Derringer et al and Jorge et al once proposed 

desirability function to transfer each response variable into 

a desirability value [7,8], then all the desirability are 

combined by using the geometric mean method to get a 

single desirability value to represent the overall assessment 

for the combined responses. But this approach is not 

consistent with the essence of probability theory for 

simultaneous optimization of multi – objects at all. 

 In this paper, a probability theory methodology for 

MOOP in material selection is developed, which involves 

the introduction of a new concept of “preferential 

probability”. The total (joint) preferential probability of a 

candidate material is from the overall consideration of all 

possible material property indicators of the candidate 

material. The total preferential probability of a candidate 

material is the unique and decisive index for the selection 

process finally.  

Probability theory-based methodology for 

multi – object optimization  

Basic requirement of simultaneous optimization of multi 

– object in probability theory 

In probability theory, if an event A composes of the 

simultaneous appearance of some individually multiple 

events, for example, A1, A2, A3, …, Aj, …, Am, its probability 

Pt (joint probability) is the product of the partial probability 

of each individual event PAj [6], i.e., 
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 Similarly, as to the MOOP of material selection, which 

involves the simultaneous satisfaction of multi material 

attributes, each sub-goal needs to get optimization at the 

same time. Lets’ take each material attribute as the partial 

event, and the material to be selected as the total (joint) 

event in the material selection process, thus the MOOP of 

material selection can be conducted fully according to the 

probability theory. Now, the rest things are the evaluations 

of material attributes in the selection process in viewpoints 

of probability. 

Quantitative evaluations of material attributes in the 

selection process in viewpoints of probability theory 

1) Conception of preferential probability 

Generally speaking, every material behaves various 

features and characteristics in different respects; each 

material attribute and its value represent one aspect of the 

material characteristics in some sense. Some material 

attribute indicators are beneficial to the material selection, 

while other attribute indicators are unbeneficial to the 

material selection. Actually, a practical material is an 

integral body of both beneficial and unbeneficial attributes 

with respect to material selection and utilization. Therefore, 

an overall consideration for material selection is necessary 

in the viewpoint of impersonal analysis, which results in the 

material selection a comprehensively systemic task.  

 Therefore, proper evaluation for both beneficial and 

unbeneficial indicators will be necessary to the material 

selection quantitatively.  

 Take the machining of a component as an example, the 

selections of proper cutting speed and feed quantity are the 

input variables, the efficiency and the life of tool are 

beneficial indicators for the material selection of 

machining, but the cost of the machining process is the 

unbeneficial indicator to the material selection. Therefore, 

both beneficial and unbeneficial indicators are all involved 

in this material selection process. In general, the beneficial 

indicators have the nature of the higher the better, and the 

unbeneficial indicators have the nature of the lower the 

better to the material selection. 

 In general, material attribute indicators have certain 

values to reflect the corresponding attributes whether 

beneficial or unbeneficial indicators. Therefore, as a 

quantitative evaluation to the term “the higher the better” 

and “the lower the better” for a material attribute indicator, 

the concept of “preferential probability” is introduced, i.e., 

the partial preferential degree of each material attribute 

indicator is directly related to its value of the material 

attribute indicator in the material selection process, and 

correspondingly the partial preferential probability of the 

candidate material can be used to characterize the partial 

preferential degree of the material in the material selection 

process quantitatively. 

2) Quantitative evaluations of preferential probability 

in respect of probability theory 

Because the actual value of the material attribute indicator 

is a quantified data of its characteristic in a sense, one could 

reasonably assume that the partial preferential probability 

of a material attribute indicator with the character of “the 

higher the better” (i.e., beneficial indicators) is positively 

correlative to its value of this material attribute indicator 

linearly in the viewpoint of the simplicity principle 

naturally, i.e., 

Pij  Uij.    (2) 

Furthermore, Eq. (2) can be written as an equation, 

Pij = jUij, i = 1, 2,..., n, j = 1, 2,..., m.   (3) 

 In Eq.(3), Uij indicates the j-th material attribute 

indicator of the i-th candidate material; Pij represents the 

partial preferential probability of the beneficial material 

attribute indicator Uij; n is the total number of candidate 

materials in the material group involved; m stands for the 

total number of material attribute indicators of each 

candidate material in the process; j indicates the 

normalized factor of the j-th material attribute indicator. 

Moreover, in accordance with the general principle of 

probability theory [6], the partial preferential probability Pij 

for the index i in j-th material attribute indicator can be 

normalized by the following summation process, i.e.,  
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From Eq. (4), it results in following consequence, 

)/(1 jj Un=
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In Eq. (5), jU  represents for the average value of the j-th 

material attribute indicator in the material group involved.  

Equivalently and comfortably, the partial preferential 

probability of the unbeneficial material attribute indicator 

Uij of the candidate material is negatively correlative to its 

material attribute indicator linearly, i.e., 

Pij  (Ujmax + Ujmin – Uij), Pij = j(Ujmax + Ujmin – Uij),   

i = 1, 2,..., n,  j = 1, 2,..., m              (6) 

 In Eq.(6), Ujmax and Ujmin express the maximum and 

minimum values of the material attribute indicator Uj in the 

material group, respectively; j is the normalized factor of 

the j-th material attribute indicator. 

Correspondingly, by using the general principle of 

probability theory [6], it results in, 
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Furthermore, according to basic probability theory [6], the 

"simultaneous optimization of multiple objects problem" 

can be conducted by using Eq. (1) reasonably.  

 Obviously, in this evaluation the total preferential 

probability of a candidate material is the unique and 

decisive index in the material selection process 

comparatively. 

 Besides, by using above procedure and Eqs (1) through 

(7), the multi object optimization problem becomes a single 

object optimization one of the total preferential probability 

in the viewpoint of probability theory automatically. 

Application of the probability based 

methodology of multi – object optimization in 

material selection 

Material selection for a liquid nitrogen storage tank 

Sarfaraz Khabbaz et. al., once proposed the material 

selection for a liquid nitrogen storage tank [9], the basic 

requirements for the material selection include good 

weldability and processability, lower density and specific 

heat, smaller thermal expansion coefficient and thermal 

conductivity, adequate toughness at the operating 

temperature, and sufficiently strong and stiff. The 

properties of the candidate materials for this selection are 

cited in Table 1. 

 The material attribute indicators of toughness index, 

yield strength and young’s modulus have the characteristic 

of the higher the better for this usage, so the these attributes 

belong to the beneficial indicators to the material selection; 

while the density, thermal expansion, thermal conductivity 

and specific heat are the unbeneficial material attribute 

indicators to this material selection, which have the 

characteristic of the lower the better. So, the evaluations for 

partial preferential probabilities of beneficial or 

unbeneficial material attribute indicators can be conducted 

according to Eqs. (3) and (5), or Eqs. (6) and (7), 

respectively.  

 Table 2 shows the results of partial preferential 

probability Pij and the total preferential probabilities Pi 

evaluated for each material attribute indicators of the seven 

candidate materials.  

Table 1. Properties of the candidate materials for the liquid nitrogen storage tank. 

Material Toughness 

index 

Yield 

strength 

(MPa) 

Young’s 

modulus 

(GPa) 

Density 

g/cm3 

Thermal 

expansion 

(10-6/C) 

Thermal 

conductivity 

(J/cm2/cm/C/s) 

Specific 

heat 

(J/g/C) 

Al 2024-T6 75.5 420 74.2 2.80 21.4 0.370 0.16 

Al 5052-O 95 91 70 2.68 22.1 0.330 0.16 

SS 301-FH 770 1365 189 7.90 16.9 0.040 0.08 

SS 310-3AH 187 1120 210 7.90 14.4 0.030 0.08 

Ti–6Al–4V 179 875 112 4.43 9.4 0.016 0.09 

Inconel718 239 1190 217 8.51 11.5 0.310 0.07 

70Cu–30Zn 273 200 112 8.53 19.9 0.290 0.06 

Table 2. Partial and total preferential probabilities of the seven candidate materials for the liquid nitrogen storage tank 

Material Preferential probability Total 

Toughness 

index 

Yield 

strength 

Young’s 

modulus 

Density 

g/cm3 

Thermal 

expansion 

Thermal 

conductivity 

Specific 

heat 
Pt105 

Rank 

Al 2024-T6 0.0415 0.0798 0.0754 0.2354 0.0963 0.0121 0.0718 0.0005 6 

Al 5052-O 0.0522 0.0173 0.0711 0.2388 0.0896 0.0425 0.0718 0.0004 7 

SS 301-FH 0.4234 0.2595 0.1920 0.0927 0.1392 0.2629 0.1667 1.1921 1 

SS 310-3AH 0.1028 0.2129 0.2134 0.0927 0.1630 0.2706 0.1667 0.3182 3 

Ti–6Al–4V 0.0984 0.1663 0.1138 0.1898 0.2107 0.2812 0.1552 0.3251 2 

Inconel 718 0.1314 0.2262 0.2205 0.0756 0.1907 0.0577 0.1782 0.0972 4 

70Cu–30Zn 0.1501 0.0380 0.1138 0.0750 0.1106 0.0730 0.1897 0.0075 5 



 

 It can be seen from Table 2 that the comparative result 

of the last column clearly shows the maximum value of 

total preferential probabilities Pi being SS 301-FH, so the 

optimal selection for the liquid nitrogen storage tank is the 

SS 301-FH, which agrees with the common knowledge [9]. 

Material selection for a flywheel 

Jee et. al., and Athawale et. al., studied the material 

selection of flywheel [10-11]. A flywheel is a typical device 

that is used to restore kinetic energy in urban subway trains, 

automobiles, mass transit buses, wind-power generator, etc. 

The hazard of catastrophic failure limits its practical 

applications. Therefore, the main requirements in flywheel 

design are to restore a large amount of kinetic energy per 

unit mass and to resist its failure due to fatigue or brittle 

fracture. The evaluated attribute indicators include the 

specific fatigue limit of the material limit/, the specific 

fracture toughness (KIC/ρ), price per unit mass, and 

fragmentability. σlimit is the fatigue limit of the material and 

ρ is the material density; the higher limit/ and KIC/ρ, while 

lower fabrication costs and fragmentability of the flywheel 

material. Table 3 shows the data of material selection for 

the flywheel [10,11]. 

 In Table 3, the specific fatigue limit, specific fracture 

toughness, and anti - fragmentability factor are the 

beneficial attributes indexes, while the specific price index 

is an unbeneficial attribute index. 

Table 3. Data of material selection for the flywheel 

No. Material σlimit/ρ 

(MPa/ 

(ton/m3) 

KIC/ρ 

(MPa∙m0.5/ 

(ton/m3)  

Price/ 

Mass 

($/ton) 

Anti - 

fragmen

tability 

M1 300 M 100 8.61 4,200 3 

M2 2024-T3 49.65 13.47 2,100 3 

M3 7050-

T73651 
78.01 12.55 2,100 3 

M4 Ti-6Al-4V 108.88 26 10,500 3 

M5 E glass-

epoxy FRP 
70 10 2,735 9 

M6 S glass-

epoxy FRP 

165 25 4,095 9 

M7 Carbon-

epoxy FRP 

440.25 22.01 35,470 7 

M8 Kevlar 29-

epoxy FRP 
242.86 28.57 11,000 7 

M9 Kevlar 49-

epoxy FRP 

616.44 34.25 25,000 7 

M10 Boron-

epoxy FRP 

500 23 315,000 5 

 Table 4 shows the results of partial preferential 

probability Pij and the total preferential probabilities Pi 

evaluated for each material attribute indicators of the ten 

candidate materials.  

Table 4. Partial and total preferential probabilities of the ten candidate 

materials for the flywheel. 

No.             Preferential probability          

Total 

σlimit/ρ KIC/ρ Price / 

Mass 

Anti – 
fragment 

ability 

Pt104 Rank 

M1 0.0422 0.0423 0.1134 0.0536 0.1084 8 

M2 0.0209 0.0662 0.1142 0.0536 0.0848 9 

M3 0.0329 0.0617 0.1142 0.0536 0.1241 7 
M4 0.0459 0.1278 0.1111 0.0536 0.3494 5 

M5 0.0295 0.0492 0.1140 0.16070 0.2657 6 

M6 0.0696 0.1229 0.1135 0.16070 1.5591 4 
M7 0.1857 0.1082 0.1021 0.1250 2.5631 2 

M8 0.1024 0.1404 0.1110 0.1250 1.9948 3 

M9 0.2600 0.1683 0.1059 0.1250 5.7922 1 
M10 0.2109 0.1130 0.0008 0.0893 0.0162 10 

 It can be seen from Table 4 that the comparative result 

of the last column clearly shows the maximum value of 

total preferential probabilities Pi being M9, i.e., Kevlar 49-

epoxy FRP, so the optimal selection for the flywheel is 

Kevlar 49-epoxy FRP, which agrees with the common 

knowledge [10,11]. 

Material selection for a gear 

Milani et al. conducted gear material selection for high 

speed and high stress applications is taken from nine 

alternative materials [12,13], i.e., cast iron, ductile iron, SG 

iron, cast alloy steel, through hardened alloy steel, surface 

hardened alloy steel, carburized steel, nitride steel and 

through hardened carbon steel. Five material attribute 

indicators are measured as the overall performances of all 

these candidate materials, i.e., core hardness (CH), surface 

hardness (SH), surface fatigue limit (SFL), bending fatigue 

limit (BFL) and ultimate tensile strength (UTS). In these 

five attributes, SH, SFL, BFL and UTS are beneficial type 

indicators, while CH is the unbeneficial attribute indicator. 

 Table 5 shows the data of material selection for the 

gear material selection [12,13]. 

Table 5. Data of material selection for the gear material selection. 

Code Alternative CH 

(Bhn) 

SH 

(Bhn) 

SFL 

(MPa) 

BFL 

(MPa) 

UTS 

(MPa) 

A1 Cast iron 200 200 330 100 380 

A2 Ductile iron 220 220 460 360 880 

A3 SG iron  240 240 550 340 845 

A4 Cast alloy 

steel 

270 270 630 435 590 

A5 Through 

hardened 

alloy steel  

270 270 670 540 1190 

A6 Surface 

hardened 

alloy steel 

240 585 1160 680 1580 

A7 Carburized 

steel  

315 700 1500 920 2300 

A8 Nitride 
steel  

315 750 1250 760 1250 

A9 Through 

hardened 
carbon steel  

185 185 500 430 635 



 

 Table 6 shows the evaluation results of partial 

preferential probability Pij and the total preferential 

probabilities Pi evaluated for each material attribute 

indicators of the nine candidate materials. 

Table 6. Evaluation results of preferential probability for the candidate 

materials. 

Code                 Preferential 

probability 

Total 

CH  SH  SFL  BFL  UTS  Pt105 Rank 

A1 0.1336 0.0585 0.0468 0.0219 0.0394 0.0316 9 

A2 0.1247 0.0643 0.0652 0.0789 0.0912 0.3765 7 

A3 0.1158 0.0702 0.0780 0.0745 0.0876 0.4135 6 
A4 0.1025 0.0789 0.0894 0.0953 0.0611 0.4211 5 

A5 0.1025 0.0789 0.0950 0.1183 0.1233 1.1213 4 

A6 0.1158 0.1711 0.1645 0.1490 0.1637 7.9498 2 
A7 0.0824 0.2047 0.2128 0.2015 0.2383 17.2376 1 

A8 0.0824 0.2193 0.1773 0.1665 0.1295 6.9098 3 

A9 0.1403 0.0541 0.0709 0.0942 0.0658 0.3337 8 

 It can be seen from Table 6 that the comparative result 

of the last column clearly shows the maximum value of 

total preferential probabilities Pi being A7, i.e., Carburized 

steel, therefore the optimal selection for the gear is 

Carburized steel, it agrees with the result of Babu et al. by 

using grey-based fuzzy logic approach [13], but doesn’t 

agree with the result of Milani et. al., by employing the 

TOPSIS method [12], the difference is due to the inherent 

shortcoming of TOPSIS.  

Application in optimization with continues 

function: A round log intercepting into a 

rectangular cross-section beam 

In the last paragraphs, the input variables and the objects 

are discrete, while in some condition the input variables and 

the objects are continuous. For example, a rectangular 

section beam is needed to be intercepted from a log, how to 

choose the aspect ratio of the height and width of the section 

to make both strength and rigidity of the beam as greater as 

possible? 

 Solution: suppose the radius of the log is r, and the 

angle between the connection line from the center O to the 

inscribed rectangular corner A is , see Fig. 1, then the 

width b and height h of the rectangular section are 

h = 3rsin,  b = 2rcos.                  (8) 

 
Fig. 1. Log rectangular beam. 

 According to the strength conditions of the beam, 

under the same cross-sectional area, the larger the anti-

bending section coefficient Wz of the beam the better, which 

is with, 

Wz = bh2/6 = 4r3(cos∙sin2)/3               (9) 

 While, according to the stiffness condition of the beam, 

when the cross-sectional area is the same, the larger the 

beam’s section moment of inertia Jz the better, which is 

with, 

Jz = bh3/12 = 4r4(cos∙sin3)/3                 (10) 

 In this question, there involves two optimizations of 

both Wz and Jz with the bigger the better simultaneously.  

 If the anti-bending section coefficient Wz is optimized 

individually, it leads to an aspect ratio h / b of 20.5 = 1.414. 

On the other hand, if the section moment of inertia Jz is 

optimized individually, it leads to an aspect ratio h / b of 

30.5 = 1.732. The above two individual values of 

optimization are clearly different. 

 However, in our actual condition the optimization is 

conducted for both anti - bending section coefficient Wz and 

moment of inertia Jz simultaneously, the partial preferable 

probabilities of both anti-bending section coefficient Wz 

and moment of inertia Jz can be assessed according to Eqs. 

(3) and (5) in principle.  

 Under addition of continuous functions, the 

"summation" in Eqs. (3) through (7) for the partial 

preferable probability evaluation process becomes an 

integral for evaluations, i.e., 

( ) ( ) 1== 
b
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jj

b

a
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Eq. (11) leads to a following result, 
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 In Eq. (12), 
jU  represents for the average value of 

the j-th material attribute indicator in the material group 

involved, ( ) )/()( abdxxUU
b

a
jj −=  , a and b 

represent the domains of input variable x. Simultaneously, 

})[()/{(1 minmax jjjj UUUab −+−=
  (13) 

 As a result, the aspect ratio of h / b for the round log 

intercepting into a rectangular cross-section beam problem 

is 2.50.5 = 1.581, which is the compromised result of the 

individual optimizations of Wz and Jz. 

Conclusion 

From above results and discussion, the probability based 

methodology for multi – object optimization in material 

selection is developed, which consider all possible material 

attribute indicators comprehensively. All the material 

attribute indicators are divided into beneficial and 

unbeneficial types, which contribute to their partial 



 

preferential probability to the candidate material in 

positively or negatively correlative manners linearly. The 

total preferential probability of a candidate material is the 

product of its partial preferential probability of each 

material attribute indicator. The total preferential 

probability determines the final result of the material 

selection definitely and comprehensively. In addition to 

material selection, application prospect of this 

methodology in materials engineering, such as forming, 

casting and machining is predictive. 

Conflict statement 

There is no conflict of interest. 

Keywords 

Material selection; probability theory; linear correlation; preferential 

probability; multi – object optimization.  

References 

1. Liu, W.; Yang, Y.; Journal of Materials Processing Technology, 

2008, 208, 499. 
2. Ashby, M. F.; Materials Selection in Mechanical Design, 4th Ed., 

Elsevier, Butterworth - Heinemann Ltd, UK, 2011. 

3. Opricovic, S.; Tzeng, G. H.; European Journal of Operational 
Research, 2004, 156, 445. 

4. Shanian, A.; Savadogo, O.; Journal of Power Sources, 2006, 159, 

1095. 
5. Maleque, M. A.; Salit, M. S.; Materials Selection and Design, 

Springer, Heidelberg, Germany, 2013. 

6. Brémaud, P. (Ed.); Probability Theory and Stochastic Processes, 
Universitext Series; Springer, Cham, Switzerland, 2020. 

7. Derringer, G.; Suich, R.; J. of Quality Technology, 1980, 12, 214.  
8. Jorge, L. R.; Yolanda, B. L.; Diego, T.; Mitzy, P. L.; Ivan, R. B.; 

Research in Computing Science, 2017, 13, 85. 

9. Sarfaraz Khabbaz, R.; Dehghan Manshadi, B.; Abedian, A.; 
Mahmudi, R., A.; Materials and Design, 2009, 30, 687. 

10. Jee, D. H.; Kang, K. J.; Materials and Design, 2000; 21, 199. 

11. Athawale, V. M.; Kumar, R.; Chakraborty, S.; Int. J. Adv. Manuf. 
Technol., 2011, 57, 11. 

12. Milani, A.S.; Shanian, A.; Madoliat, R.; Nemes; J.A.; Struct. 

Multidisc. Optim., 2005, 29, 312. 
13. Babu, J.; James, A.; Philip, J.; Chakraborty, S.; Int. J. Mater. Res., 

2017, 108, 702. 

 

https://1lib.net/g/Pierre%20Br%C3%A9maud

