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Introduction 

Although the “natural” and customary way to study 

crystalline and nanocrystalline solids is the traditional band 

theory developed in k-space taking advantage of the 

periodicity of the system in one, two, or three dimensions, 

appropriate real-space models can give surprisingly good 

results for selective macroscopic properties of the infinite 

solids. Historically [1,2], besides the studies of atomic 

clusters per se, such methods were initially restricted to 

local or “localized” properties [1-7], such as impurity states 

or inner-core electronic properties [5-7] (in the bulk); and 

chemisorption (or adsorption) at the surfaces and interfaces 

[3,4]. However, “the cluster method” was occasionally  

(and rather unconventionally) extended to nonlocal 

“macroscopic” structural and electronic properties [8-10]; 

especially for relative comparisons, or when limited 

information was needed, or even when computational 

resources were scarce. The biggest problem in such 

calculations, which involve “an act of truncation” from a 

larger system, separating only a small part of it was the 

effect (i.e., the interaction) of the environment (rest of the 

system) with the cluster, which has to be, or assumed to be 

“small’’. Otherwise, the validity of the results could be 

doubtful. Here these types of atomistic calculations, which 

for reasons which will become clear below we could call 

We demonstrate that a suitable atomistic method with judicially selected nanoclusters/ 

nanocrystals (in real space) supplemented with general symmetry and dimensionality arguments, 

can give surprisingly good results for macroscopic properties of the infinite crystalline solid, such 

as bandgaps, cohesive energies, as well as aromaticity (if any), at minimal computational cost and 

maximum physical insight. For graphene on top of these properties the present approach can 

successfully describe in real space and illuminate many of its exotic properties, which are usually 

introduced in k-space, such as Dirac points or topological insulators. An early version of this 

methodology has been very successfully applied and extrapolated to Si, Be, BeH, CdSe, MgH, 

crystals and nanocrystals, with almost chemical accuracy in most cases. Here, after a pedagogical 

and critical review of the earlier results, we introduce a new combined and expanded approach to 

comparatively describe the electronic and cohesive properties of diamond and graphene. For the 

later a drastically enlarged sequence of “nanocrystals” of well-chosen geometries and sizes up to 

1440 atoms or 8190 electrons is used to verify earlier predictions and results.  We have obtained 

in a simple and fast way the bandgap (5.4 eV) and the cohesive energy (7.34 eV/atom) of diamond 

with almost chemical accuracy; and we have fully rationalized (in a different perspective and 

prospective) the electronic and cohesive properties of graphene, with a tentative value of 

cohesive energy of 7.52 eV/atom. Strangely enough this value is larger than the one for diamond 

and is currently under investigation. Finally, we suggest that this methodology in its current 

simple and transparent form can be a first-line diagnostic, functional, and inexpensive 

computational tool. This is particularly true for quick assessments and comparative estimates, 

size-dependence studies, or cases where standard k-space methods or other advanced 

techniques either fail or demand unavailable computational resources. 
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“static” or “single”, are not the subject of the present work, 

although a relatively large part of it could be thought of as 

a review article. The real focus of the present investigation 

is a conceptually different type of atomistic calculations, 

which for distinction we can call “dynamic”, although such 

name could be misleading. In reality, such types of cluster 

calculation involve a judicially chosen sequence of clusters 

(n in number) of successively increased sizes, representing 

the molecular evolution to the infinite system approached 

in the limit of n→∞. Clearly such evolution is spatial not 

temporal. However, the name could be somehow justified 

under some conditions or assumptions, in which either a 

hidden velocity is implied, or the sequence converges to a 

superposition of states, which could be interpreted as a 

dynamic interchange. The corresponding author, who has 

work for a long time with real space cluster calculation and 

is familiar with both types of atomistic calculations, “static” 

[3-10], and “dynamic” [11-27], has recently introduced a 

special methodology in the last category of atomistic 

calculations based in guided extrapolation in accord with 

general dimensionality arguments, which in many cases can 

lead to very accurate (sometimes within “chemical 

accuracy”) results [11-18]. Moreover, lately a different 

approach within the same “dynamic” methodology has 

been proposed by the same author (A. D. Z.) and 

collaborators for 2-dimensional (2D) graphene-based 

structures and graphene [19-27], which is based in a simple 

“geometrical” notion of aromaticity, general symmetry 

arguments, and the “shell model”, [20] which underlines 

the properties of the polycyclic aromatic hydrocarbons 

(PAHs) constituting graphene nanocrystals or “graphene 

dots”. It should be mentioned at this point that in modern 

terms the atomistic approach encompasses a large variety 

of molecular-type real space methods, which have the 

advantage over traditional band structure methods in k-

space to be able to include, if needed, high level 

correlations by quantum chemistry methods, such as many-

body perturbation theory (MBPT), coupled clusters, etc. In 

addition, current atomistic calculations can also include 

periodic boundary conditions, at various levels of 

correlation, most of the times surpassing in accuracy related 

band structure calculations. However, at the same time such 

calculations become more complex or cumbersome and 

more computationally demanding, losing the prime 

advantage of simplicity and transparency, which are the key 

features of the present work. Here we will focus on the 

recent “dynamic” approach mentioned above. It has been 

shown that such approach for 2D graphene-based structures 

is robust, powerful, and transparent, reproducing 

“advanced” many-body effects and peculiarities of 

graphene [21-28], such as Dirac cones and topological 

insulators, at a minimum amount of mathematical and 

computational cost. The same quantities for diamond, as 

will be shown below, have been performed in the literature 

with a large variety of techniques of usually much higher 

computational cost and (most of the times) lower accuracy 

[29-36]. A short summary of the methodology used 

especially in the two “dynamic” atomistic approaches, 

which are relatively new will be given below in the next 

two sections, which describe both the computational and 

conceptual framework of this work. This summary having 

a special pedagogical character is dedicated to help the 

familiarization and the working knowledge of the reader 

with relatively new and not widely known “techniques”, in 

which the present authors happen to be very familiar. As 

such, this kind of summary unavoidably describes at the 

same time an account of the authors’ recent work, with the 

risk to be considered somewhat lopsided. After the 

summary of previous results new results (in comparison to 

earlier results) are presented for graphene and larger 

hexagonal nanographenes (NGRs) and PAHs in the 

subsequent two sections. These new results expand and 

verify earlier predictions and results [23-28] leading also to 

new interpretations and predictions. We present two 

“dynamic” atomistic approaches for graphene, which we 

combine to derive additional new results and insight for its 

electronic and cohesive properties. These are subsequently 

compared with similar results for 3D diamond.  

Computational details  

The computational and technical details have been 

described before [23-27]. All geometrical structures have 

been optimized (with tight convergence criteria), using the 

hybrid PBE0 [37] functional, employing the 6-31G(d) basis 

set. This level of theory is considered adequate for the 

purpose of this work. The complete set of calculations was 

performed with the GAUSSIAN program package [38]. 

Results and discussion 

Conceptual and computational framework 

The numerical extrapolation technique 

Historically and conceptually the cluster model of a solid 
(crystal) was developed and used for more or less 
“localized” properties (impurity levels, chemisorption, etc.) 
[1-10], as was mentioned earlier, using a single isolated 
(“small”) cluster to model the solid (i.e., the region of 
interest of the solid). This approach, having the added 
advantage of the possibility to use (when needed, and 
possible) advanced correlation techniques of quantum 
chemistry [10,11,13] was quite successful [1-11], even 
when was used in borderline cases of questionable validity 
[8,9]. With the advent of computers (and the resulting 
increase of computer power) and the discovery of 
nanocrystals and nanocomposed materials, as porous 
silicon, the study of the variation of properties, such as the 
“bandgap” or the “optical gap” in terms of size of the 
nanoparticles was inevitable and very fruitful [10-12], 
culminated with the optical gap (and resulting 
photoluminescence) of silicon (and other [16-18] related) 
nanoparticles [10-12]. The “bandgap” in real space 
corresponds to the energy difference between the highest 
occupied molecular orbital (HOMO) and the lowest 
unoccupied molecular orbital (LUMO), i.e., the  



 

 
HOMO-LUMO gap. For better comparisons with 
(photoluminescence) experiments instead of the HOMO-
LUMO gap, the “optical gap” is more appropriate [10-12], 
which includes electronic correlation through “many-body” 
effects. With time, besides HOMO-LUMO and optical 
gaps, which were very important for the observed 
photoluminescence from silicon nanoparticles despite the 
very low (optical) gap of silicon (≈1 eV), other properties, 
such as desorption and/or cohesive energies (for other 
nanoparticles or nano composed materials, used for 
hydrogen storage or similar applications) emerged [13-15] 
to be (nanoparticle) size-dependent. For hydrogen storage 
applications our group has worked with Mg, Be, as well as 
MgH and BeH nanocrystals and nonoclusters [13,15]. 

During these studies, a new feature emerged for the size 
dependence of (at least) these properties, which include 
HOMO-LUMO and optical gap, as well as cohesive or 
binding energies (to be defined below). It was found that 
the variation of these properties with size was more or less 
uniform and could be approximated by a simple algebraic 
relation of the form: 
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where 𝐸 is the energy under question (HOMO-LUMO gap, 
optical gap, binding energy or cohesive energy), D is the 
“diameter” of the nanoparticle and N the number of (heavy) 
atoms of the nanoparticle. In the above expression A, B, C, 
F, m, and n are free parameters (constants) to be determined 
by the fit of the (experimental or theoretical) points (E, D) 
or (E, N). In the present study only theoretical (not 
experimental) results have been considered. Such 
semiempirical relations, which are in accord with quantum 
confinement [12], were widely used in the literature for the 
optical gap of Si nanoparticles [10-13], with quoted values 
for the exponents m or n varying between 0.76 and 1.3, 
whereas our initial value was 13 𝑚 = 0.89 ± 0.15, close to 
unity. In the above relation for   𝐸(𝐷) or 𝐸(𝑁) observe that 
the value of the parameter C or A corresponds to the energy 
gap (band gap) of the infinite crystal, since as 𝐷 → ∞ (or  
𝑁 → ∞), A (or C) becomes equal to 𝐸(∞), e.g.,  
C ≈ 𝐸(∞) [𝑜𝑟  𝐴 ≈  𝐸(∞)].  The value we initially 
obtained was 𝑚 = 0.89 ± 0.15 and A = 1.02 ±0.25 eV, 
almost identical to the bandgap of crystalline Si. 
Subsequently, when the fits were further improved by 
including larger size Si nanocrystals [16], with higher levels 
of electronic correlation [10] (and better fit to the 
experimental measurements [10,16]) we have obtained a 
better value of the exponent m, m= 1.01 ± 0.05, which 
was practically equal to unity with a predicted optical gap 
[16,17] of Eg = E(∞) ≈ A = 1.08±0.1 eV. Therefore, it was 
highly suggestive to us that m should be equal to unity 
(m=1), and the gap would vary inversely proportional to the 
diameter D of the Si nanoparticles. In this case for spherical 
(or nearly spherical) nanoparticles the exponent n should be  
n = 1/3, e.g., the gap would vary inversely proportional to 
the cubic root of the number of nanoparticles N. Thus, by 
keeping the values of the exponents m and n fixed eq. (1) 
becomes: 

1

1

3

(D) ( ) , or for 3-dimensional systems

( ) ( )

E A B D a

E N C F N b

−

−

 = + 
 
 
 = +    (2) 

 Obviously, for 1-dimensional (1D) or 2-dimensional 
systems the denominator of the exponent n would be 1 and 
2 respectively representing the (“effective”) dimensionality 
of the nanoparticles. Moreover, since the energy (HOMO-
LUMO) gap is a zeroth order measure of chemical hardness 
or (kinetic) chemical stability, it could be expected that 
binding energy/cohesive energy would also vary with the 
same exponents (-1 or -1/3) in terms of D or N, and 
furthermore, if relations (1) and (2), were a general 
“geometrical” relationship, it should be expected to be valid 
for other nanoparticles (besides Si) as well. Indeed, 
Vanithakumari, and Nanda [29-30] have illustrated, based 
on the liquid drop model and other general arguments and 
experimental results that that the cohesive energy [29] and 
other related quantities depend inversely proportional on 
sized D and that this is a rather “universal” relationship, 
independent of the particular material [30]. The binding (or 
cohesive) energy is the energy required to break a solid in 
isolated atomic species from which the solid was built, and 
as such is related with melting temperature, boiling 
temperature, Debye temperature, and desorption energy (in 
case of metal hydrides MgH, BeH, etc., used for hydrogen 
storage), etc. For a silicon or other nanoparticle (NP) or 
“quantum dot” (QD) terminated with hydrogen, consisting 
of NSi Si and NH H atoms, 𝑆𝑖𝑁𝑆𝑖

𝐻𝑁𝐻
, the binding energy 

BENP or BEQD is defined as: 

𝐵𝐸𝑄𝐷 = 𝑁𝑆𝑖𝐸(𝑆𝑖) + 𝑁𝐻𝐸(𝐻) − 𝐸𝑄𝐷[𝑆𝑖𝑁𝑆𝑖
𝐻𝑁𝐻

],  (3) 

where, 𝐸(𝑆𝑖), 𝐸(𝐻), and  𝐸𝑄𝐷[𝑆𝑖𝑁𝑆𝑖
𝐻𝑁𝐻

] are the total 

energies of Si atom, H atom, and QD, respectively.  
Alternatively, we can introduce the cohesive energy 
𝐸𝐶𝑜ℎ,𝑄𝐷 in which the interaction energy between the Si and 

H at the surface has been effectively removed: 

𝐸𝐶𝑜ℎ,𝑄𝐷 = [𝐵𝐸𝑄𝐷 + 𝜇𝐻𝑁𝐻]   (4) 

where 𝜇𝐻 is the chemical potential of hydrogen. The value 
of  𝜇𝐻  is obtained by DFT calculations (here PBE0/6-31g*) 
of the total energy differences before and after removing 
one or more equivalent H atoms. In several cases (not here) 
for simplicity the values of 𝜇𝐻 obtained from methane are 
used. Usually, we are interested in the binding or cohesive 
energies per (heavy) atom (here Nsi), which correspond to 
the cohesive energy of the infinite solid for Nsi→∞ This 
quantity is obtained by dividing the expressions (3, 4) by 
NSi. Using these expressions for the binding and cohesive 
energies and the ansatz of inverse D dependence we have 
reproduced the experimental binding energy of Be crystal 
(3.32 eV) with unexpectedly very good agreement  
(3.26 ± 0.06 eV), and we have predicted a value of  
7.85 eV ± 0.02 eV for the binding energy of for [BeH2]∞ 
infinite system [15]. We have also predicted that the 
majority of the lowest energy stoichiometric BenH2n 
nanoparticles are chains or chain-like structures (1D). With 
the same methodology we have found [13] the experimental 
desorption energy of 75.5 kJ/mol for the infinite MgH 



 

 
system with remarkable accuracy (76.5 ± 1.5 kJ/mol). The 
absolute (not normalized) desorption or dissociation 
energy, ΔΕdtot(MgnH2n), for a MgnH2n nanocluster is defined 
as usual by the relation: 

2 2 2(Mg H )  (H )  [ (Mg ) (Mg H )]n n ndtot n nnE E EE = + −
     (5) 

whereas the normalized per H2 molecule desorption  
energy, ΔΕd (MgnH2n), is given as: 

2 2 2(Mg H ) (H )  [ (Mg ) (Mg H )]n n n nd nE E E nE = + −
  (6) 

In the above relations (5, 6) E(H2), E(Mgn), and 
E(MgnH2n) are the total energies of the H2 molecule, and of 
the Mgn and MgnH2n clusters, respectively. Normally these 
values include the zero-point energy (ZPE) corrections for 
all relevant structures (H2, Mgn, and MgnH2n). Finally, with 
the same methodology, as is illustrated in in Fig. 1, we have 
obtained with excellent accuracy the (optical) gap of 
crystalline Si (1.08 ± 0.01 eV) and with relatively good 
accuracy its cohesive energy, 5.01 ± 0.40 eV, whereas the 
experimental value is 4.63 - 4.68 eV/atom [31,32]. The 5.01 
eV value was obtained [17] with the M06 DFT functional, 
compared to 4.13 eV/atom with the B3LYP functional. 

 

Fig. 1. (a) The optical gap of Si nanocrystals as a function of the number 
of Si atoms in (eV). The results of the calculation are shown with blue  
(on line) triangles. The continuous curve corresponds to the fit of the 
functional form shown (in blue color) in the central part of the figure.  
(b) The variation of the cohesive energy in eV per (Si) atom [16,18]. The 
inverse triangles (in purple color on line) represent the calculated points, 
whereas the continuous curve, as in (a), corresponds to the fit shown in the 
figure. 

 Needless to say, that within the statistical error of the 

fit (±0.40 eV) the experimental result is bracketed by these 

values. It is important at this point to emphasize that the 

structures of the nanoparticles used in these calculations are 

nanocrystals (not nanoclusters), and also make the 

distinction between nanocrystal and nanoclusters. For a 

given number of Si (or other) atoms, the structure of the 

nanocluster corresponds to the lowest energy structure of 

the free Si (or other) cluster. In contrast, the structure of the 

nanocrystal corresponds to the lowest energy structure 

having the symmetry (and geometrical properties of the 

infinite crystal. These nanocrystals are terminated by 

hydrogens to saturate the surface dangling bonds (similarly 

to their experimental counterparts). Thus, the two could be 

totally different. For analogous isoelectronic (and 

“isoatomic”) Ge nanoparticles of the same geometry and 

symmetry (Td), the calculated optical gap of Ge crystal was 

similarly obtained [16,18] as Eg= 0.95 ± 010 eV, well 

within the experimental value. Results for carbon 

(diamond) isoelectronic QDs are given in Section 3. 

Finally, it should be mentioned that in all or most of the 

nonlinear fits involved in these calculations attempts to 

improve the fits by letting the exponents m or n in (1) vary, 

fail. In most cases the quality of the fit worsens. On the 

other hand, in cases where the effective dimensionality of 

the samples is not obvious (as in Be or graphene 

nanocrystals), freeing the exponent n can be very 

illuminating, vide infra.  

The numerical extrapolation technique 

Besides the “classical” or general (“dynamical”) atomistic 

approach described above, a conceptually different 

approach has emerged recently for graphene and its 

“nanocrystals” (NGRs and PAHs), suggested by the 

corresponding author and collaborators [20-28]. In this 

approach the series of nanocrystals not only have the same 

symmetry and dimensionality as the infinite system, but 

they also form a well-defined and well-coordinated (with 

mutually interrelated members) sequence of hexagonal (D6h 

symmetric) PAHs, named the “main sequence” of PAHs, 

which is proven to precisely (we could risk to call it 

“mathematically”) converge to the (physical, chemical, and 

topological) properties of graphene, including the exotic 

ones (Dirac points, topological insulators, etc.) [23-26]. 

The members of the main sequence are not just model 

systems but (many of them) exist and are naturally 

abundant polycyclic aromatic molecules with well-defined 

number of carbon and hydrogen atoms (at their edges). 

Each PAH contains in a form of a babushka Russian doll all 

the previous PAHs (one inside the other) defining a Shell 

structure [24] with a benzene “nucleus”, which renders this 

sequence of PAHs, a real molecular bridge from benzene to 

graphene. [25] The critical properties of the nth member of 

this sequence (electronic, aromatic, and topological 

properties) are uniquely determined by their sequence 

number, n, which is also called the shell number, for 

obvious reasons. Such properties include the morphology, 

symmetry and parity of both HOMO and LUMO (which in 

the limit of n→∞ converge to the valence and conduction 

bands, respectively), as well as the precise distribution of 

aromatic and non-aromatic (“empty”) rings which defines 

the aromaticity pattern and the symmetry of the electron-

hole pair) [24,25]. These properties alternate as the shell 

number n increases, alternating between odd and even 

numbers. Thus, the full properties of the nth member of the 

sequence are naturally linked with those of the (n − 1)th and 

the (n + 1)th members. This provides not only a description 

of the end-system (graphene) but also of the intermediate 

members of the sequence, many of which could be 

considered as equally important as the end-system, defining 



 

 
a route or a spatial (and time?) evolution at the same time. 

As a result, in the limit of n→∞, where the properties of the 

(n − 1)th and the (n+1)th PAHs coincide with the properties 

of the nth, we are lead to a resonance (superposition) of 

aromaticity patterns, HOMO-LUMO orbitals, as well as 

full and empty rings [23-25] since the HOMO and full rings 

of the nth PAH are identical with the LUMO and empty 

rings of the (n−1)th and (n+1)th PAHs. This renders 

graphene a flat aromatic resonance structure, pretty much 

like benzene, justifying the name “super benzene” [24,25]. 

At the same time the interchange of HOMO and LUMO 

could naturally describe (in the limit n→∞) the touching of 

the valence and conduction bands (at the Dirac points) and 

the resulting valence-conduction [25,26] band on, as well 

as the associated dynamical breakdown of parity (which is 

a many-body effect) [31]. Moreover, as in the pair of nth 

and (n±1)th, one of them obeys both fundamental aromatic 

rules, Hückels rule of 4m + 2π electrons and Clar’s rule of 

sextets (6k), whereas the other does not, we can deduce that 

graphene is “dynamically” aromatic by superposition (or 

resonance) of the two forms [20,24,25]. All this is 

illustrated schematically in Fig. 2. 

 

 

Fig. 2. Schematic illustration of the main sequence of PAHs: (a) The main 

sequence of PAHs (up to n = 6), showing the aromaticity patterns of the 

PAHs and the shell structure (top left). Aromatic rings are indicated with 
a full red circle on their centers. The middle panel in red frames 

symbolically illustrates the resonance structure of benzene and graphene 

in parallel, as well as the “equivalence” of Hückel’s and Clars’ rules (see 
text). (b) the benzene-like core orbitals of the first 4 PAHs of the main 

sequence. 

 In the bottom part of Fig. 2, in Fig. 2(b) is illustrated 

that each of these PAHs always contains a “hard core” of 

characteristic benzene (occupied) orbitals, verifying the 

shell structure (geometrical and electronic) [24]. The same 

shell structure is responsible for the periodic variation of 

the electronic and aromatic properties of armchair graphene 

nanoribbons (AGNRs) with width [25,26] (W) and their 

resulting classification according to the number N of carbon 

atoms across the width in three categories: W = 3N, W = 

3N−1, and W = 3N + 1, which in fact is classification 

according to their aromaticity patterns [26]. This is true not 

only for infinite length AGNRs, but also for finite length 

AGNRs, for which the study of the length dependence of 

their properties can reveal very interesting results, 

including phase transitions [27]. In general, the properties 

of graphene and graphene nanostructures, including PAHs 

are very sensitive to geometry, edge morphology, and, last 

but not least, aromaticity, as the present approach has 

revealed recently. Thus, the great importance of aromaticity 

for the electronic (and other) properties of graphene itself 

and of the large variety of NGRs is one of the important 

lessons learned here [27]. We should also realize that in 

many cases, where the variation of the properties with 

width or length is a real physical (Chemical), and not a 

model question, the atomistic or molecular description is 

the most appropriate and “natural” method to use, which 

may be considered as a borderline case where the initial and 

final system are just the same. 

Combining the two approaches: The numerical 

extrapolation for graphene 

It would be interesting at this point, after this discussion  

of the “aromatic” extrapolation method, to apply the 

numerical extrapolation method to graphene. According to 

our earlier conclusions we should try to fit the HOMO-

LUMO energy gap in terms of N (the number of carbon 

atoms) to a form like: 
1

2( ) ( 0)E N C F N
−

= = +      (7) 

since graphene is 2-dimensional with zero gap. Fig. 3 

describes the results of this attempt. 

 

Fig. 3. Variation of the HOMO-LUMO gap of hexagonal PAHs  

of the “main sequence”20 in terms of the number of carbon atoms N.  

(a) For N=6-300, and (b) N=6-1500, corresponding to shell numbers 1-15. 
The colored continuous curves represent numerical fits for various 

combinations of exponents (and parameters) in relation (2.b), as described 

in the insert box. A better and complete illustration of the larger clusters 
(shell numbers 8-15) can be found in Fig. S1 in the supplementary 

information.   

 As we can see in Fig. 3(a), both attempts (with C = 0 

and C ≠ 0) with exponent n = -1/2 fail. Strangely enough 

the best fit is obtained for non-zero C, and exponent  

n = -1/4; but what is even more strange is that the parameter 



 

 
C, which as we have seen earlier should be equal to the band 

gap of graphene, C= E(∞), is negative: C ≈ −2.60 eV. 

Before we try to access or rationalize this result, we have to 

make sure of its essential correctness, if any. To this end, in 

the next section we have extended and expanded our 

calculations to include more and much larger PAHs from 

the main sequence. 

Expanding and extending the combined approach 

Enlarging the molecular bridge to graphene 

In Fig. 3(b), we show the analogue of Fig. 3(a), for the 

PAHs with shell number from 1 to 15. The 15th PAH 

consists of 1350 C atoms and 90 H atoms in the periphery 

containing a total 8190 electrons. 

 As we can see in Fig. 3(b), the fit with exponent  

1/4 is by far the best. But again, as before, Fig. 3(a), the 

parameter C = E(∞), is still negative C ≈ −2.60 eV. 

However, before we venture a plausible interpretation of 

these results, we should inspect the morphology and 

symmetry of both HOMO and LUMO orbitals and  

their interrelation, for the larger PAHs. This is done in  

Fig. 4. As we can see in Fig. 4, the alteration of  

symmetry and parity of HOMO, LUMO gaps described 

above for the smaller members of the main sequence is 

preserved and remains the same. Moreover, we can observe 

in Fig. 4 that as the size is getting larger, the largest values 

of the electronic density in the frontier orbitals are 

concentrated in the periphery of the PAHs. This is related 

with the shell structure combined with the zigzag 

morphology of the edges [24,28]. The same effect in 

rectangular AGNRs leads to topological edge (or end) 

states [27]. The trend of parity alteration, dictated by 

inversion symmetry and reflecting the electron-hole 

symmetry [24,25], also demands that the two degenerate 

HOMOs of even parity, e1g (with 2-dimendional (2D) 

symmetry group representations) obtained for odd shell 

numbers, will be associated and linked with the 

corresponding (2D) LUMOs of odd parity e2u. This is 

complemented and corroborated also by the linking of the 

full and empty rings between successive PAHs [25]. In 

addition, the same even parity HOMO pair will be also 

linked with the odd-parity HOMOs (e2u) of the previous 

and next PAHs in the sequence, with even shell numbers. 

Obviously the same is true for the odd parity (e2u) HOMOs, 

which are linked to the e1g LUMOs, and the even parity e1g 

HO-MOs of the neighboring PAHs. This is emphasized in 

Figure S2, which shows in better resolution the morphology 

and symmetry of the two components of the 2D degenerate 

molecular orbitals, HOMO (1, 2) and LUMO (1, 2), for one 

odd-shell PAH (with shell number n = 9) and one PAH with 

even shell number (n = 14). Moreover, to illustrate that the 

effective dimensionality of 4, and the accompanying 

negative value at infinity are purely electronic 

characteristics (involving the electrons in the frontier 

orbitals), we show in Fig. 5 the corresponding fits and 

predictions for the cohesive and binding energies. These are 

given by Equations (3) and (4) above, divided by the 

number of heavy atoms, i.e.  the number of carbon atoms 

N, in place of NSi in eqs. (3-4). 

 
Fig. 4. The HOMO and LUMO orbitals of the main sequence PAHs for 

shell numbers n=8 up to n=14. 

 
Fig. 5. Cohesive and binding energies of the main sequence PAHs 
(graphene dots), which form a bridge between graphene and benzene, as a 

function of the number of carbon atoms. The functional form of the fits is 

shown in the central part of the figure. 

 

 Moreover, to illustrate that the effective dimensionality 

of 4 (and the accompanying negative value at infinity) is a 

purely electronic characteristic (in particular of the 

electrons in the frontier orbitals), we show in Fig. 5 the 

corresponding fits and predictions for the cohesive and 

binding energies given by Equations (3) and (4) above, 

divided by the number of heavy atoms, i.e. the number of 

carbon atoms N. The results for cohesive and binding 

energies are practically identical. 

 As we can see in Fig. 5, the variation with the number 

of carbon atoms for both of them correctly and fully is 

described by the exponent in agreement with the two-

dimensional nature of graphene, as expected. In addition, 



 

 
both curves predict a (positive) cohesive energy of 

graphene of about 7.7 eV/atom, which appears to be larger 

than the cohesive energies of both diamond and graphite 

[31]. This is a very significant result, but we will discuss 

and compare this value later in comparison to analogous 

results for diamond. 

Possible interpretations and plausible suggestions 

The 4th dimensional variation of the HOMO LOMO gap 

with the number atoms should be fully related with 

inversion symmetry conflict between the full molecular 

group (D6h) and the (sub)lattice group (D3h), which is also 

responsible for all or most of the exotic properties of 

graphene [25], including the existence of two aromaticity 

patterns with trigonal (D3h) and hexagonal (D6h) 

symmetries, respectively [25,28]. In the present case 

inversion symmetry conflict demands the alteration and 

interlinking between HOMO and LUMO orbitals (as well 

as with LUMO and HOMO orbitals of neighboring PAHs) 

as well as of aromaticity patterns, as is shown in Fig. 2(a). 

In addition, this trend reflecting the electron-hole symmetry 

[24,25], is also responsible for the interlinking of the full 

and empty rings between successive PAHs [25]. In all 

PAHs (and, by extrapolation, graphene) The HOMO and 

LUMO molecular orbitals are 2 × 2. The 2D (doubly) 

degenerate orbitals, holding a total of 4 electrons and 4 

holes. This can be interpreted as an effective dimensionality 

of 4. Quantum mechanically this is also in full accord with 

the 4-dimensional nature of the effective relativistic Dirac 

equation, which (effectively) describes the electronic 

properties of graphene. 

 The negative value of the fitted parameter C = Eg(∞) ≈ 

−2.60 eV is not independent of 4th dimensional variation of 

the HOMO LOMO, if we recall valence-conduction band 

inversion and related “dynamical” breakdown of parity, the 

latter been a many body effect related with inversion 

symmetry breaking [33]. Moreover, the value of −2.60 eV, 

which is practically equal to the hoping integral -t entering 

the tight binding Hamiltonian (and the Hubbard model 

Hamiltonian) [28] (where are the creation, annihilation 

operators, respectively, which create and annihilate an 

electron at site i with spin σ) is highly suggestive that C in 

this case, with coupled HOMO-LUMO orbitals could be 

equal to t. After all, the HOMO-LUMO gap is normally 

associated with the transfer of an electron from the ground 

(HOMO) to the 1st excited state (LUMO). In the case of 

hoping it could be argued that this is rather related to the 

transfer of an electron from one cite A to the nearby cite B. 

Otherwise, the mixing of HOMO and LUMO implied for 

large values of the shell number n, dictated by inversion 

symmetry could be considered to lead to open shell singlet 

state, within the one-body DFT framework, which loosely 

speaking, could be linked with an effectively negative value 

of the gap, equal to the hoping (or resonance) integral. 

Indeed, initial estimations (based on the fits of the first 7 

PAHs of the main sequence) for the value of the shell 

number n at which band-crossing or band inversion could 

occur suggested values around n ≈ 13 with a margin of  

2–3 units. This could be considered as appositive prediction 

since the lowest energy state of the n = 10 PAH is found to 

be open singlet, with small distortions of symmetry. 

Nevertheless, all these suggestions are at least plausibility 

arguments which need further studies and work, which we 

plan to explore in future work. 

 

Fig. 6. Comparison of the B3LYP (in blue colour) and PBE0 (in dark red 

colour) results for the length variation of the HOMO-LUMO gap of 
graphene dots (hexagonal PAHs). Both fits describe the N-1/4 dependence 

(see text). 

 

 The 4th dimensionality and the negative value of Eg(∞) 

discussed above are clearly plausibility arguments and 

interpretations which are not formulated mathematically or 

proven by stringent facts. This would be completely outside 

the scope and the principles of the present investigation, 

which emphasizes simplicity and physical insight. 

However, it is natural (and welcomed) these results to 

generate possible doubts and questions concerning the 

suitability of the present approach based on DFT 

calculation, and in particular the choice of (only) one 

specific functional, PBE0. Obviously, the full answer 

involves Dirac’s equation and/or many-body-theory of 

graphene, which are well beyond the scope of the present 

work. However, we can examine the same results with a 

different hybrid functional such as B3LYP. This functional 

is very popular and well-known, and includes “exact 

exchange”, which is absolutely necessary for this problem, 

in view of inversion symmetry conflict mentioned earlier. 

This is because the exchange interaction is more sensitive 

to inversion symmetry. More elaborated or advanced 

methods are no needed at this point since we are only 

interested in plausibility arguments and tentative 

suggestions, focusing on trends, which sometimes can be 

considered equally or even more important than “exact” 

numbers. Fig. 6 shows the B3LYP fits in comparison to the 

PBE0 ones. As we can see in this figure, both the “4th 

dimensionality and the negative Eg(∞) are fully 

reproduced. In addition, the value of Eg(∞) is the same, 

within statistical uncertainty, Eg(∞) = t ≈ -2.50 eV,  which 

is also well within the uncertainty of the value of t in the 

literature. Thus, the results revealed here, although 



 

 
plausibility arguments and tentative suggestions, could be 

considered rather universal in the sense that they are well 

reproduced by other (hybrid) functionals. Moreover, we 

should also take into account that similar preliminary 

calculations for silicene (in the buckled D3d geometry) 

produced very good quality fits with the same key 

characteristics i.e. 4th -dimensionality and negative 

parameter C = Eg(∞) = t.  The value of the parameter t in 

this case is equal to ~ -1.2 eV, in excellent agreement with 

the quoted results in the literature for silicene. 

Comparisons to diamond 

Fig. 7(a) shows the HOMO-LUMO gap variation of carbon 

nanocrystals. As we can see in Fig. 7, the N−1/3 fits are not 

so good as the N-1/4 and N-1/3 for graphene in Figs. 3 and 5. 

Nevertheless, these fits are better than any other choice of 

exponent, and even better than the ones with free exponents 

(to be determined from the fit). In addition, the N−1/3 is the 

only one which reproduces with almost chemical accuracy 

the band gap of diamond 5.42 eV, compared to the 

experimental value of 5.46 eV. This is unexpectedly good 

result. For obvious reasons we do not have here artificial 

(or real) negative values, as in graphene. Of very good 

accuracy is also the fit of cohesive and binding energies 

shown in Fig. 7(b), which predict a 7.50 eV/atom cohesive 

energy which in full agreement with the results obtained by 

the advance Quantum Monte Carlo (QMC) [31] method. 

(7.503 eV/atom). 

 Both quoted values do not include vibrational zero-

point energy (ZPE) which can be corrected by a uniform 

shift of 0.176 eV/atom [31] which brings both values (ours 

7.34 eV/atom and the QMC 7.327 eV/atom) in excellent 

agreement with the experimental value of 7.346 eV/atom. 

Interestingly enough, the latest quoted values in the 

literature for the cohesive energy of diamond using periodic 

second-order Moller-Plesset perturbation theory (MP2) is 

7.91 eV/atom, whereas the results of periodic couple 

clusters theory with single and double excitations (CCSD) 

give 7.04 eV/atom respectively [32]. Both values are quite 

far away from the present results, the Monte Carlo results, 

and the experimental values. It is also important to 

emphasize that the CCSD results took 10000 CPU-hours in 

a cluster of 512 GB memory, while the present results were 

obtained in a few CPU-hours using a single 4-processors 

workstation with 16 MB memory. Obviously, not all results 

can be obtained with the same accuracy using our present 

approach, although the CPU requirements would be 

expected to be of about the same level. Corresponding 

periodic DFT calculations are clearly much less 

computationally demanding compared to the CCSD 

calculations, but undoubtedly more demanding, compared 

to the present approach, with varying accuracy. For 

example, He et. al., [34] using periodic DFT calculation at 

the local density, and generalized density approximations 

(LDA, and GGA, respectively), have obtained cohesive 

energies of 8.997 eV/atom (LDA), and 7.693 eV/atom 

(GGA) respectively (about 4% off the experimental for the 

GGA). However, the corresponding bandgaps were found 

at 4.648 eV, and 4.635 eV respectively, almost 1 eV smaller 

than the experimental value (more than 20% off).  Earlier 

periodic LDA results employing norm conserving 

pseudopotentials [35] have obtained the cohesive energy of 

diamond within a range [-16%, +6%] depending on the 

quality of the basis set, at a very low computational cost, 

but with bandgaps underestimated by about 20%. To get 

better bandgaps one has to use hybrid functionals. Muscat 

et. al., [36] have used hybrid B3LYP and obtained a 

bandgap of 5.8 eV (+0.3 eV above the experimental value). 

Thus, the present method, on the basis of the computational 

cost and the accuracy of both electronic (bandgap) and 

cohesive (cohesive energy) properties it can clearly be 

considered superior, compared to the methods mentioned 

above. Coming back to graphene now, for which cohesive 

property calculations are rare, and experimental results, as 

far as we know, are not yet available, our present 

calculations should be considered theoretical predictions, 

which could further test this approach. For graphene the 

ZPE correction amounts to 0.166 eV/atom [31], which 

renders the predicted value for the cohesive energy of 

graphene (obtained from the fit in Fig. 6) equal to  

7.52 eV/atom, still larger than the one for diamond, whereas 

the value obtained by QMC is 7.298 eV/atom, smaller than 

both diamond and graphite. This could be settled in future 

work. 

 

 

 

Fig. 7. (a) The calculated HOMO-LUMO gap of diamond nanocrystals 
(full circles) and the N−1/3 fit (solid line). The insert shows the nanocrystals 

used. (b) The calculated binding/cohesive energies in eV/atom for the 

diamond nanocrystals (full circles) and the N−1/3 fit (solid line).  



 

 

Conclusion  

We have successfully applied and critically reviewed, 

analyzed in a rather tutorial way a modern version of a 

relatively old technique. This technique originally known 

as the “cluster” model, was later generalized to “atomistic 

calculations”, especially by solid state physicists. In 

modern times the atomistic approach has been evolved into 

a full-fledged successful field of materials science of very 

good accuracy, which includes a large variety of real space 

methods, incorporating high level correlation by quantum 

chemistry methods, as well as periodic boundary 

conditions, allowing super shell calculations; at the cost of 

becoming more complex, less transparent, and more 

computationally demanding. We have seen computational 

cost of 10000 CPU-hours in clusters with 512 GB memory, 

[32] in comparison to a few CPU hours in single 4-

processor workstations with 16 MB memory, using the 

present method, with comparable or better accuracy. Such 

kind of accuracy was rather unexpected, since the original 

target was simplicity and transparency. Nevertheless, such 

result clearly illustrates the hidden power of “simple” and 

general symmetry and dimensionality arguments which are 

largely misunderstood or undervalued. This is the major 

point of the present work. The viewpoint presented here 

gives emphasis in the physical content, simplicity, and 

consistency, demanding a critical selection of the various 

parameters and methods. This approach was initially 

invoked as an order-of-magnitude estimate for quick 

comparisons, seeking maximum information at minimum 

computational cost, relying in simplicity and transparency. 

However, it was finally evolved to be a simple, useful, and 

powerful tool, without losing its initial target. We have 

illustrated and reviewed the high potential of this “strategy” 

in a large variety of applications from our own work 

ranging from comparative studies, quick estimates, size-

dependence studies, all the way up to full and accurate 

studies, in a rather large range of applications. In the present 

work we have applied this approach to a comparative study 

of 3D diamond and 2D graphene, in which we have 

obtained with almost chemical accuracy the bandgap (5.4 

eV) and the cohesive energy (7.34 eV/atom) of diamond, 

and we have fully rationalized in a different perspective 

(and prospective) the electronic and cohesive properties of 

graphene. For the cohesive energy of graphene, we have 

obtained a tentative value of 7.52 eV/atom, which is 

currently under further investigation since it is larger than 

the cohesive energy of both diamond and graphite. Finally, 

we suggest that this methodology can be very useful and 

successful in a large variety of future applications in 

computational material science. This methodology should 

be particularly useful for length or size-dependence studies, 

relative comparisons, and semi-infinite systems with mixed 

nano, micro, or macro components. Obviously, not all 

results nor all properties can be obtained with the same 

accuracy for all materials, using this approach. We 

anticipate, however, its expanded future applications for 

more new results and applications with more rich physical 

insight and understanding, at minimum computational cost. 

The present authors share the view that trends (stressing the 

physical content and insight) should be more important than 

numbers. Nevertheless, sometimes (as in the present study) 

one could practically have both. 
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Graphical abstract 

We review and combine two different atomistic-calculation approaches 

for macroscopic solids, applying them successfully to 2D graphene, in 
comparison to the 3D diamond with a dual target: 1) to gain novel physical 

insight about the Dirac points and the “4th dimensionality of graphene’s 

description, and 2nd) to show that the same simple and transparent 
methodology can give accurate results with minimal computational cost 

for selective properties such as band gaps and cohesive energies, 

practically identical with experiment. 
 

 
 
 

  


