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Abstract 

Monoclinic electrochromic tungsten trioxide (WO3) layers were grown on FTO substrates using a Low Pressure Chemical 

Vapor Deposition (LPCVD) system. The effect of the deposition temperature on the structural and morphological 

characteristics as well as the electrochromic response of the layers was examined. It was found that increasing deposition 

temperature improves the crystallinity of the layers which affects their electrochemical/electrochromic behavior. Copyright © 

2018 VBRI Press. 
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Introduction 

In recent years, chromic metal oxide layers have attracted 

scientific interest due to the many technological 

applications they may be used. For example, vanadium 

pentoxide (V2O5) can be employed in electrochromic 

smart windows [1], Li+ Batteries [2-3] etc. Similarly, 

vanadium dioxide (VO2) has the ability to undergo a 

phase transition from insulator to metal state at a critical 

temperature (Tc), a property that can be used in 

thermochromic smart windows [4-6], optical switches [7], 

actuator etc. Regarding tungsten trioxide (WO3) seems to 

be a rather promising material that can be used in many 

valuable applications such as photocatalytic coatings [8], 

batteries [9], sensors [10], capacitors [11] and 

electrochromic smart windows [12].  

 During the years, many deposition technics has been 

used for the development of WO3 layers with significant 

electrochromic performance. Sputtering [13-14], pulsed 

laser deposition (PLD) [15], hydrothermal growth [8] and 

chemical vapor deposition (CVD) [16-20] are some of 

them, emphasis given in most of the cases on the study of 

the effect of deposition parameters on characteristics of 

the grown layers.  

 In this work, a low pressure chemical vapor 

deposition (LPCVD) system has been employed for the 

development of WO3 on FTO substrates, using tungsten 

hexacarbonyl (W(CO)6) as precursor. X-ray diffraction 

(XRD), Raman spectroscopy, field-emission scanning 

electron microscopy (FE-SEM) and cyclic voltammetry 

were used for the characterization of the samples, 

emphasis given on the effect of the deposition 

temperature on the basics characteristics and the 

electrochromic behaviour of the WO3 layers.  

Experimental 

The tungsten trioxide layers were deposited on FTO 

substrates (Pilkington, United Kingdom) using a low 

pressure chemical vapor deposition system. Tungsten 

hexacarbonyl (W(CO)6) (Sigma Aldrich, United 

Kingdom) was used as tungsten precursor without further 

purification. Finally, the growth was assisted with N2 

(99.999%) and O2 (99.999%). 

 The growth of WO3 was performed in horizontal cold 

wall reactor [21], the W(CO)6 vapors generated in a 

bubbler maintained at 80 oC and introduced in the reactor 

at a constant flow of 50 sccm N2 carrier gas (99.999%). 

The respective O2 flow rate through the reactor was kept 

also constant at 50 sccm, while, the deposition 

temperature was varied from 350 oC to 550 oC. Prior to 

deposition, all substrates were ultrasonically cleaned with 

propanol, acetone, ultrapure H2O and dried with N2. 

 Structural analysis was performed in a Siemens 

D5000 X-Ray Diffractometer (using as operating 

conditions: CuKα with λ = 1.54056 Å, 2θ= 20.0-30.0o, 
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step time 60 s/o) and a Nicolet Almega XR micro-Raman 

system for the range of 100 - 1000 cm-1 and a laser 

excitation at 473 nm. The morphological characteristics of 

the samples were evaluated in a JEOL JSM-7000F  

field-emission scanning electron microscope (FE-SEM), 

after their over-coating with gold, needed to avoid 

charging. The transmittance measurements were 

performed in a Perkin Elmer Lambda 950 

spectrophotometer over the wavelength range of 300-800 

nm. Finally, a three-electrode cell was used for the 

electrochemical analysis of the samples as reported 

previously [22-25], employing 1 M LiClO4 in propylene 

carbonate as the electrolyte. The reference electrode was 

Ag/AgCl, the counter electrode was Pt and the working 

electrode was the WO3 layers on FTO substrates. The 

measurements were performed using a scan rate of 10 mV 

s-1 in the voltage range of -1000 mV to +1000 mV, the 

area of the working electrode (WO3 on FTO) exposed to 

the electrolyte being 1 cm2. Chronoamperometry 

measurements were used to evaluate the lithium ion 

intercalation / deintercalation process with respect  

to time, at −1000 mV and +1000 mV for a step of 200 s 

and a total time period of 1500 s. Finally, the thickness of 

the layers was determined using an A-step TENCOR 

profilometer. Prior to these measurements, a step was 

formed by etching the WO3 coatings off the FTO glass 

substrate with 1:3, H2O2 (30%):HCl. FTO remained  

intact after this procedure and the thickness was  

deduced from the measured step height. The thickness of 

the coatings deposited at 350 oC was found <20nm,  

while for the depositions at 450 and 550 oC was about  

50 nm. 
 

Results and discussion 

All as-grown WO3 layers were uniformly transparent in 

the visible and appeared to have sufficient adhesion, 

passing the Scotch tape test (removal of an X shaped 

piece with sticking tape [5]). Moreover, they had similar 

properties after six months in air, indicating their stability 

with time.  

 Fig. 1 shows the XRD patterns of layers deposited at 

three different temperatures, 350, 450 and 550 oC. As can 

be seen, there is a trend of better crystallinity as the 

deposition temperature increases. 

 Fig. 1(a) shows the XRD for the layer deposited at 

350 oC, where there is only one peak at 26.6o which is 

attributed to the FTO substrate [26] with Miller indices 

(110), indicating that the WO3 layers at 350 oC are 

amorphous. As the deposition temperature increases, there 

is a clear improvement of the crystallinity. For the 

deposition at 450 oC (Fig. 1(b)), the characteristics peaks 

of monoclinic WO3 at 23.3 o, 23.8 o, 24.5 o and 28.9 o 

exist, corresponding to Miller indices (002), (020),  

(200) and (112) [27-29], with a preferred orientation 

along (002). Further increase of the deposition 

temperature up to 550 oC improved more the crystallinity. 

As shown in Fig. 1(c), the intensity of the peaks have 

increased and the preferred orientation has changed from 

(002) to (020). 

 

Fig. 1. XRD patterns of the WO3 layers grown at various deposition 

temperatures:  350oC (a) 450oC (b) and 550oC (c). 

 Fig. 2 shows the Raman spectra of the same samples. 

Raman peaks at the frequencies of 269 and 323 cm-1 are 

assigned the W-O-W bending modes of bridging oxide 

ions [30], while the W-O-W stretching mode (tungsten 

oxide network) corresponds to the high frequency Raman 

peaks at 713 and 806 cm-1 [30-31]. 

 In agreement with the XRD results, Raman 

Spectroscopy reveals a trend towards improved 

crystallization as the deposition temperature increases, 

since not only the intensity of the peaks increases, but 

also these become narrower. Moreover, the spectrum of 

the samples grown at 350 oC indicates that this is rather 

amorphous. 
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Fig. 2. Raman spectra of WO3 layers grown at various deposition 

temperatures:  350oC (a) 450oC (b) and 550oC (c) 

 Following the morphological characterization, it 

seems that the change of the preferred orientation can 

affect the morphology of the layers. As shown in the SEM 

images of Fig. 3, all layers appear to have a granular 

morphology. Nevertheless, there is a slight change in the 

morphology structures as the deposition temperature 

increases. 

 
 
Fig. 3. FE-SEM images of the WO3 layers grown at various deposition 

temperatures:  350oC (a) 450oC (b) and 550oC (c) 

 At 450 oC the structures are smooth, while, when the 

deposition temperature increases to 550 oC, the structures 

are sharper and their surface becomes more porous. This 

change in the morphology can be attributed to the change 

of the preferred orientation, shown in the XRD 

measurements, because of the strain induced at the (020) 

plane with increasing temperature, leading in a preferable 

grow along (020) plane [32]. 
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Fig. 4. Cyclic voltammograms of the WO3 layers grown at various 

deposition temperatures:  350oC (a) 450oC (b) and 550oC (c), for number 

of scans 1, 250 and 500, using a scan rate of 10 mV s-1 and 1 M 

LiClO4/propylene carbonate as electrolyte. 

 In order to evaluate the effect of deposition 

temperature on the electrochemical performance of the as-

grown WO3 layers, current-voltage curves were recorded 

for up to 500 scans using the three electrode cell, 

sweeping the potential between -1000 and +1000 mV at a 

scan rate of 10 mV s-1, the respective results shown in 

Fig. 4.  

 

Fig. 5. Current density versus time of the WO3 layers grown at various 

deposition temperatures:  350oC (a) 450oC (b) and 550oC (c), at a voltage 

step of -1000 mV and +1000 mV for an interval of 200 s and total time 

period of 1500 s up to 500 scans. 

 The IV curves were normalized to the geometric area 

of the sample resulting in units of μA / cm2. 
 The initially transparent WO3 layers were turned to 

blue when they were cathodically polarized in LiClO4, 

while they became transparent again when anodically 

polarized. The color - bleach process can be represented 

according to the following equation [33]: 

 

WO3 (transparent) + xLi++ xe- ↔ LixWO3 (blue) 
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 500 scans were conducted only for the samples 

deposited at higher temperatures. For layers deposited at 

350 oC, the current density was found decreasing rapidly 

after the first scan, because of the amorphous nature of 

the material. The layers deposited at 450 oC showed very 

good stability up to 500 cycles. Finally, although the 550 
oC sample showed an increased current, a shift of the 

oxidation-reduction reaction peaks and a decrease of the 

current density was observed after long-term cycling. This 

indicates that trapping of charge appears as a result of 

irreversible chemical reactions between the lattice and the 

Li+ ions, the amount of the incorporated charge 

decreasing during the cycling [34-35]. 

 Chronoamperometry measurements were also 

conducted up to 500 scans and are shown in Fig. 5. Using 

these results, the intercalation charge density (obtained by 

the integration of the excess current density) and the time 

response (defined as the time needed for excess current 

density to reduce by 10% of the absolute maximum value) 

were calculated [36-37], for the samples under 

investigation and summarized at Table 1. These values 

indicate that the intercalation charge density is higher for 

the deposition at 550 oC which can be attributed to the 

more porous surface according to the SEM images. 

However, the deposition at 450 oC presents a better 

performance since the difference between intercalation 

and deintercalation charge density after the first scan is 

only 7.5%, while for the deposition at 550 oC this 

difference approaches 41%. Moreover, after 250 scans, 

the intercalation charge density was reduced by 16% in 

the 450 oC case, while the reduction approaches 25% for 

the samples deposited at 550 oC.     

Table 1. The investigation of intercalation charge and the time response 

for the samples. 
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350 120 -- 120 -- 0.59 -- 0.24 -- 

450 13 12 7 6 4.11 3.45 3.80 2.45 

550 17 14 10 12 5.17 3.90 3.03 1.97 

 
 According to reports in the literature, nanostructured 

porous WO3 films have high surface area, which could 

better facilitate the intercalation/deintercalation of Li-ions 

into/out of the WO3 crystal lattice [38]. However, at the 

same time, there are more trapped ions into the lattice 

after each cycle, which favors a degradation in the 

performance.  

 Fig. 6 shows the ex-situ optical transmission data for 

the as grown WO3 layers in the colored and bleached state 

for the depositions at 450 and 550oC.  

 

Fig. 6. Transmittance measurements of the WO3 layers grown at various 

deposition temperatures:  450oC (a) 550oC (b). 

 From these graphs the change in optical density at 

670nm can be estimated according to the equation: 

Δ(ΟD) = log (Tb / Tc) 

where Tb and Tc are the transmittance at bleached and 

colored state respectively. Then, the coloration efficiency 

can be determined using the equation: 

η = Δ(ΟD) / Qi 

where Qi is the intercalation charge density [39]. The 

coloration efficiency for the deposition at 450 oC was 

determined to be 32.5 cm2 / C, while for the deposition at 

550 oC its value was slightly increased to 38.8 cm2 / C, 

values in good agreement with the values reported  

[40-41]. The good electrochromic results combined with 

the one step process using a simple low cost deposition 

technic made the specific method attractive for large scale 

production. 
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Conclusion  

Monoclinic tungsten trioxide layers were developed at 

various deposition temperatures, using a low pressure 

CVD system. It was found that the increase of the 

deposition temperature improves the crystallinity and 

modifies the preferred orientation of the as-grown layers. 

This affects the morphology of the layers, since, as the 

deposition temperature increases, the surface becoming 

more porous, which, in combination with the improved 

crystallinity, enlarges the intercalation charge, according 

the chronoamperometry measurements. The most stable 

layers was that deposited at 450oC, since it combines 

good crystallinity, uniform surface and good stability 

during the cyclic voltammetry cycles. 
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