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Abstract 
We have employed the Dirac's massless quasi-particles together with the Kubo's formalism of the linear response to study the 
spin transport properties by electrons in the graphene monolayer. We have calculated the electric conductivity and verified 
the behavior of the AC and DC currents of this system, which is a relativistic electron plasma. Our results show a 
superconductor behavior for the electron transport with the AC conductivity tending to infinity in the limit ω → 0. This 
superconductor behavior for the electron transport in the graphene is similar to one recently obtained theoretically for the spin 
transport in the quantum frustrated Heisenberg antiferromagnet in the honeycomb lattice, verifying so a similarity between 
these two different kinds of transport what can generate futures applications in the modern electronic.                          
Copyright © 2017 VBRI Press. 
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Introduction 
Graphene is an allotropic form of carbon which is 
recently researched. It has semiconductor properties with 
low-lying excitations obeying the massless Dirac’s 
equation [1]. The interplay between the antiferromagnetic 
and Kekule valence bond solid ordering in the zero 
energy levels of neutral monolayer and bilayer graphene 
has been studied in [2]. On the other hand, 
understanding of the dynamics of many interacting 
particles is a formidable task in physics. For electronic 
transport in the matter, the force of interactions can lead to 
a breakdown of Fermi liquid paradigm of the coherent 
quasi-particles scattering amplitude by the impurities of 
the lattice. In such situations, the complex microscopic 
dynamics can be coarse-grained to a hydrodynamics 
description of momentum, energy, and charge transport 
on long length and time scales [3, 4]. 

The spin transport has received much attention in the 
actuality due its connection with the spintronics. In this 
field, the generation and detection of spin polarized 
currents have been studied extensively with the aim to 
use the spin degree of freedom to improve the electronic 
devices [5]. Within this filed, the spin transport in 
graphene has been theoretically studied in the literature using 
the Boltzmann’s equation formalism [6, 7]. In general, 
the graphene is an interesting material for spintronics, 
showing long spin relaxation lengths even at room 
temperature. For the future of spintronic devices, it is 
important to understand the behavior of the spins and the 

limitations for spin transport in structures where the 
dimensions are smaller than the spin relaxation length 
[8]. The electron spin lifetime in carbon materials is 
expected to be large because of the very abundance of 
the spinless nuclear isotopes 12C and the small size of 
spin orbit coupling. This leads to propose the graphene 
as an optimal material to store quantum information in 
the spin of the electrons confined. However, most of the 
experiments show that the spin lifetimes are in the range 
of nanoseconds, much shorter than expected from these 
considerations, which lies at the heart of the design of 
devices where graphene is used as a passive component 
to carry spin currents. 

Above liquid helium temperatures, the electronic 
properties of graphene are intrinsic, being governed by 
thermal excitations only. This gives a way how close can 
one approach the Dirac point in graphene 
experimentally, where the Dirac point can be 
approached within 1 meV, a limit currently set by the 
remaining charge in homogeneity [9]. 

One standard formalism in the literature to study the 
transport (spin transport and electron transport) is the 
Kubo formalism of the linear response theory. This 
formalism has been employed to study the spin transport 
in magnetic materials [10-18].  Moreover, we have that 
the electron transport in zigzag graphene nanoribbons 
with upright standing carbon chains has been 
investigated using first-principles calculations. Being the 
calculated results showing a significant odd-even 
dependence [19].  
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From an experimental point of view, we also have an 
intense research about the spin transport by electrons in 
graphene and the quantum Hall effect for spins. [19-23]. 
The spin injection and transport in monolayer  
graphene can be investigated also using nonlocal 
magnetoresistance measurements (MR) [24]. 

The aim of this paper is to study the spin transport by 
electrons in graphene monolayer using the Dirac 
fermion formalism. The graphene consists in a fermionic 
system with a relativistic Dirac spectrum where the 
energy vanishes linearly at isolated points in the Brillouin 
zone. Dirac’s fermions are provided by numerous new 
experimental realizations. These include d-wave 
superconductors and topological insulators [25]. 

This work is divided in the following way. In section 
2, we discuss about the model, in section 3 we discuss 
about the Kubo’s formalism of transport, in section  
4 we discuss about the similarity between the  
electron conductivity of the graphene with the spin 
transport in quantum frustrated two-dimensional 
Heisenberg antiferromagnet in the hexagonal lattice and 
in the section 5 we present our conclusions and final 
remarks. 
 
The model 

The model of relativistic free-fermionic particles of the 
graphene in D = 1+1 dimension is described by the 
following Hamiltonian density [26] 
 

    (1) 
 

where,  with α=1,2 denote a two component Fermi 
field in D=1+1 and D=2+1 space dimensions and vF is the 
Fermi's velocity. We have considered unities where vF = 1 
and . The interaction term has the form up to the 
irrelevant additive constant 
 

                 (2) 
 

which is the interaction term of the (1+1) dimensional 
Gross-Neveu-model. 

Assuming that electrons in graphene are non-
interacting, the standard band theory calculations on a 
honeycomb lattice in two spatial dimensions with nearest-
neighbor hopping give two species of Dirac fermions with 
single-particle spectrum in the relativistic form [3]. 

 
                                                       (3) 

 
where, in the massless (gapless) limit, the spectrum is   
linear, hence, time and space scale the same way T ∼ L, 
as required by relativistic invariance [26]. There are  
local interactions such as (ψ¯γµψ)2 and (ψ¯ψ), where   
ψ¯ = ψ† γ0. The action of the free Dirac’s field  is 
 

                (4) 
 

where, γ  are the 4 × 4 Dirac’s matrix.1 is the unit  
2 × 2 matrix, and σ are the components of Pauli’s  

matrix where the Dirac γ-matrix, γ0, γ1 and γ5 satisfy the 
algebra 
 
{γµ, γν } = 2gµν, γ5 = iγ0γ1.    (5) 

 
gµν is the Minkowski’s metric tensor. In the theory of 
free massless Dirac’s fermions there are a fixed point in 
the renormalization group [26]. 
 
Kubo formalism of transport 

We use the low energy approach Dirac’s fermion [5, 25] 
to determine the regular part of the electron conductivity 
(AC conductivity)  or continuum conductivity. An 
electron current appears if there is an electric field by the 
Ohm’ Law J = σ E. In a similar way a spin current 
appears as a response of a magnetic field JS = σ ∇B , 
through the system, where it plays the role of a chemical  
potential  for spins. If one connect a low dimensional  
magnet with two bulk ferromagnetic,  they can act as 
reservoirs for spins [21, 22]. Then, one has a flow of 
spin current if there is a difference, ∆B, between the 
magnetic fields at the two ends of the sample. In the 

Kubo formalism [8, 10, 27, 28] the conductivity is 
given by:  

) 

Where, ⟨K⟩  is the kinetic energy and Λ(q⃗, ω) is the 
current-current correlation function defined as  
 

 .               (7) 
 

The current operator for graphene  is given by  
 
J  = ψ̄ γµψ.           (8) 
                
The real part of σ(ω), σ′(ω), can be written in a standard 
form   as [28] 
 
σ (ω) = σ0(ω) + σreg(ω),                                (9) 
 
where, σ0(ω) is the DC contribution, given by        
σ0(ω) = DSδ(ω). DS is the Drude’s weight  
 
DS = π[⟨K⟩ + Λ’ (k⃗ = 0, ω → 0⃗)]                  (10) 
                   
σ0(ω) represents the ballistic transport where we define 
ballistic transport as transport where the mean free path 
of the excitations is limited by the sample size. 
σreg(ω) is the continuum contribution to the 
conductivity or AC current. Therefore, when 
DS > 0 we have an ideal conductor; DS=0 and 
σreg(ω)>0 means that the system is a 
conventional conductor and DS=0 and σreg(ω) 
= 0 means that the system is a insulator.   
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Fig. 1.  A sheet of carbon atoms, graphene monolayer, with 
the carbon atoms in a honeycomb lattice.  
 
Results  
Discussion of the results 

Using the Green’s function method at finite temperature 
[28], we obtain the Green’s function for the model Eq. (1) 
as 
 

 
 

                                (11) 
 
where f(ωk) = 1/(eβωk + 1) is the Fermi-Dirac 

distribution.  
In Fig.2, we show the behavior of σreg(ω) with ω. We 

have getting a behavior of the AC conductivity 
tending to infinite when ω → 0, since the system is 
gapless.  we have obtained therefore a superconductor 
electron transport for the electric current in the DC limit. 
We have found that this behavior is similar to one recently 
obtained for some quantum frustrated two-dimensional 
spin systems described by the two-dimensional 
Heisenberg antiferromagnet in the honeycomb lattice 
[29].  

 

 

 
Fig. 2. Behavior of the AC conductivity for the value of  
T = 1.0J. Since the conductivity tends to infinity at ω , 
we have an ideal conductor in DC limit. 

This behavior for the spin current in magnetic spin 
systems is a consequence of absence of gap in  the 
excitation spectrum. Since the Dira’s fermion model of the 
graphene does not present gap in the spectrum, thus we 
will not have electrons to form one electric current for all 
values of ω. In the same way happens in the frustrated 
antiferromagnet in the hexagonal (honeycomb)  lattice. 
Moreover, if there is no scattering mechanism, it is 
expected that the conductivity to be divergent. The reason 
is that the spin-spin scattering is not treated properly in 
the mean field approach. In Fig. 3 we show the Drude’s 
weight behavior. Since we have obtained DS > 0 for  
T > 0, we will have an ideal electron transport or a 
superconductor for T > 0. At T = 0, we have DS → 0 as 

showed in Fig. 3 and σreg(ω) = 0, Therefore, we must  
have an insulator  behavior in this limit of T . The 
behavior of the Drude’s weight  DS(T ) > 0 is showed in 
the Fig. 3. Due the mean field approach used, we have 
that the results for small T are accurate however, for large 
T values, we must have only a qualitative description. 
 

 

 
Fig. 3. Behavior of the Drude’s weight, DS (T), in function of 
T. Since we have DS (T) > 0 for T > 0, hence we have a 
superconductor behavior for T  > 0. 
 
Relation with the spin transport in the quantum 
antiferromagnet in the honeycomb lattice  
 
The model is defined as  

                     (12) 

We consider the integer spin, S = 1 [30]. 
The spin current operator: 

 
The spin current correlation function: 

 
The Kubo formula :  
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Fig. 4. The spin current in zig-zag in the two-dimensional 
antiferromagnet in the hexagonal lattice.  
 

The Mean Field Schwinger boson formalism 

In this formalism we choose the basis: 

 
Where     are the eigenstates of SZ 
 
The spin operators are written via a set of three boson 
operators 
 
t, ( = x, y, z) 
 

 
where | v  is the vacuum state. We also have the 
constraint condition   

 

We write the spin operators in terms of the bosons t 

 
To study the disordered phases we introduce other two 
bosonic operators u and d with the constraint 

 
The Schwinger’s boson formalism is a mean field 
approximation that becomes accurate in the N → ∞ limit. 

We assume that the tz bosons are condensed  
(Bose-Einstein Condensation): 

 
In Fig. 5, we present the behavior of  with ω. 

Due to the hexagonal crystal lattice, we must have a spin 
current in zig-zag over the material as depicted in Fig. 3. 
Since the system is gapless we have obtained a behavior 
of the AC spin conductivity tending to infinity when 
ω→0, that corresponds to the DC limit. Hence, we obtain 
a superconductor behavior for the spin transport in the DC 
limit. This behavior is similar to ones recently obtained 

for the two-dimensional ferroquadrupolar model [31] and 
for the triangular lattice, being a characteristics [32] of 
spin systems without gap in the excitation spectrum. 
 

 
 
Fig. 5. The spin conductivity in the two-dimensional  antiferromagnet  in 
the hexagonal lattice. 
 
Conclusion 
In summary, we have verified a similarity between the 
transport properties at two different quantum models. The 
Dirac’s fermion model of the graphene monolayer, which 
is a quantum paramagnet and the quantum two-
dimensional antiferromagnet in the honeycomb lattice. 
We have obtained theoretically that the behavior of the 
electric conductivity of the graphene and the spin 
conductivity of the anisotropic two-dimensional frustrated 
Heisenberg antiferromagnet in the hexagonal lattice are 
the same. Experimental results for the spin transport in 
antiferromagnets in the hexagonal lattice can give a 
support to our theoretical results. In both cases, the AC 
conductivity t tends to infinite in the DC limit (ω → 0). 
However, more specific experimental results for the spin 
transport in quantum frustrated spin systems are 
necessary within this statement to support the claim. 
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