Structural, electronic and magnetic investigations on PLD based La₂Ni_{1-x}Fe_xMnO₆ disordered thin films

Pravin M. Tirmali, Sagar M. Mane, Snehal L. Kadam, Shrinivas B. Kulkarni^{*}

Department of Physics, The Institute of Science, 15 Madam Cama Rd, Mumbai, 400020, India

*Corresponding author: E-mail: sbk_physics@yahoo.com

Received: 26 November 2016, Revised: 11 March 2017 and Accepted: 07 April 2017

DOI: 10.5185/amlett.2017.1518 www.vbripress.com/aml

Abstract

The double perovskite materials show the magnetic semiconductor, magneto-optic and magneto-capacitance like interesting properties. It is predicted that the B-site substitution in this system may results in interesting properties. La₂Ni_{1-x}Fe_xMnO₆ thin films are deposited on Pt/Ti/Si(100) substrate by Pulse Laser Deposition (PLD) technique. The films were uniform, fine grain and stoichiometric deposited at very low O₂ pressure. The XRD of La₂Ni_{1-x}Fe_xMnO₆ thin films exhibits rhombohedral (R-3) phase. The peak broadening appears in Raman spectra at antistretching (518 cm⁻¹) and stretching (656 cm⁻¹) modes with presence of overtone modes at 1308 cm⁻¹ in La₂Ni_{1-x}Fe_xMnO₆ thin film samples. XPS analysis reveals the presence of La³⁺, NiO, Ni³⁺, Fe³⁺, Mn³⁺ and oxygen vacancies in samples. The Ni³⁺ and Mn³⁺ antiferromagnetic coupling is responsible for decrease in saturation magnetization M_s from 4.78 to 2.74 μ_B /f.u as Fe substitution increases from 0.1 to 0.3 at 5K. The increase in grain size, peak broadening and decrease in magnetization of La₂Ni_{1-x}Fe_xMnO₆ thin film samples suggest presence of antisite defects and antisite phase boundary. The present work will helpful to study the effect of B site substitution on La₂NiMnO₆ thin films structural, electronic and magnetic properties in order to make it suitable candidate for potential applications. Copyright © 2017 VBRI Press.

Keywords: Double perovskite, PLD, raman spectra, antisite defects, antisite phase boundary.

Introduction

Double perovskites are the materials of interest in recent years. It exhibits multiferroic nature, where ferromagnetic and ferroelectric orders coexist [1-2]. The double perovskites have wide range of applications such as magnetodielectric capacitors [3-4], spin filtering tunnel junctions [5-6], solid-state thermoelectric Peltier coolers [7], solar cell application [8] etc. The double-perovskite structure (A₂BB'O₆) is comprised of two perovskites (ABO₃) and (AB'O₃). In (A₂BB'O₆), A represent cations (La, Ba, Sr, Y, Ca and Ce), while B and B' are transition metal cations (Ni, Fe, Mn, Ca and Co). The different compositions of double perovskite have been explored by researchers extensively such as La₂NiMnO₆[9-11], Sr₂FeMoO₆[12], Bi₂FeCrO₆ [13], Y₂NiMnO₆[14].

The La₂NiMnO₆ is one of interesting double perovskite material, which exhibits several properties like ferromagnetism near room temperature, dielectric properties, magnetocapacitance, magneto-resistance, ferroelectric properties [**15**], colossal magneto-dielectric and multiglass properties [**16**]. These properties of La₂NiMnO₆ are highly depends on Ni and Mn cation ordering such as Ni ²⁺ and Mn ⁴⁺ or Ni ³⁺ and Mn ³⁺ states. The ordered arrangement of the NiO₆ and MnO₆octahedra

gives rise to 180° ferromagnetic interactions between Ni²⁺ $(d^8, S=1)$ and Mn^{4+} $(d^3, S=3/2)$ ions governed by Kanamori-Goodenough rules [17]. Recent studies show the microwave sintering effect on properties of La₂NiMnO₆ [18], effect of A site (Ba) substitution effect on structural, magnetic and vibrational properties of La₂NiMnO₆ double perovskite [19,20,21], effect on electric and dielectric properties of B site (Mg) doping on La₂NiMnO₆[22], high transition temperature and short ferromagnetic ordering in La_2FeMnO_6 [23]. The substituted La₂NiMnO₆ composition properties were engineered to make it potential candidate for applications. The double perovskite material properties are highly synthesis sensitive [33]. Therefore numerous methods were used for preparation La2NiMnO6 such as solid-state reaction, sol-gel method etc. In present work hydroxide co-precipitation method with constant pH is used to synthesize Fe substituted La₂NiMnO₆ samples in order to obtain high crystallinity, nano size powder samples. Similarly, different techniques are employed for film fabrication such as chemical wet process [24], MBE [25] and Pulse Laser Deposition (PLD). Among these methods PLD is the most suitable techniques for fabrication of double perovskite thin film deposition. It offers the possibility of a high oxygen partial pressure during

growth and can produce good quality of films. The earlier studies also show the different substrates were used for double perovskite film formation such as STO, LAO and Pt/Ti/Si [26-32]. The substitution will interchange the ionic positions in A2BB'O6 lattice and also affect structural, electronic and magnetic properties of the parent material. It will be interesting to study the role of Fe substitution in ferromagnetic ordering of La2NiMnO6 and its effect on several factors viz. antisite defects and antisite phase boundary, transition temperature, structural, electronic and magnetic properties of parent material. Several studies were made on A and B site substitution of A₂BB'O₆, however very few reports available on B site partial substitution of La₂NiMnO₆ thin films. In addition, the magnetic properties depend on substrate and oxygen pressure which affect the Ni²⁺ and Mn⁴⁺ order. Therefore, the present investigations are based on partial substitution of Ni (B site) with Fein La₂NiMnO₆ double perovskite lattice. Here PLD based Fe substituted La₂NiMnO₆ i.e. $La_2Ni_{1-x}Fe_xO_6$ thin films have been deposited at low O_2 pressure on Pt/Ti/Si(100) substrate.

Experimental

Materials details

The chemicals used were AR Grade $La(NO_3)_3.6H_2O$, $Ni(NO_3)_2.6H_2O$, $Fe(NO_3)_3$.9H₂O, KMnO₄, MnCl₂, KOH, NH₄OH Sd-fine chemicals India Ltd.

Material synthesis

The compositions are synthesized via hydroxide co-precipitation method and for this purpose KOH is used as a precipitating agent. The precipitates thus formed were washed for several times using dilute NH₄OH solution (pH~9.00). Use of dilute NH₄OH minimizes solubility of hydroxide ions in water. The precipitate then filtered and dried to form nano-crystalline powder ofLa₂Ni_{1-x}Fe_xMnO₆where x= 0 to 0.3. The powders were presintered at 600 °C for two hours in air and further grinded to fine powder. The 5% PVA were added as binder to form pellets (20 mm diameter) of fine powders of parent and Fe substituted La₂NiMnO₆. The pellets were sintered at high temperature in muffle furnace at 1200°C for 16 hours in air to form a required composition.

The sintered pellets were used as target material for preparation of $La_2Ni_{1-x}Fe_xMnO_6$ where x=0 to 0.3, for thin films on Pt/Ti/Si(100) substrates by a KrF excimer pulsed laser deposition system with a wavelength of 248 nm. The thin films were deposited with a fixed energy density of 1.5 J/cm² and a repetition rate of 5 Hz at temperature 700 °C at O₂ pressure 20 mbar. The thin films were cooled down at 10 °C/min in an oxygen atmosphere to room temperature. The $La_2Ni_{1-x}Fe_xMnO_6$ thin films were annealed in O₂ ambience at 750 °C for 1 hour.

Characterizations

The crystalline structure of $La_2Ni_{1-x}Fe_xMnO_6$ thin films were determined by Rigaku Smart Lab High Resolution X-ray Diffraction (HRXRD). Spin phonon

coupling by Raman spectroscopy (Jobin Yvon, Raman or, HG 2S), surface analysis by X-ray photon spectroscopy Model: PHI 5000 Versa ProbeII (ULVAC—PHI, INC, Japan) monochromatic Al-K α source (hv =1,486.6 eV), It contains a micro-focused (200 μ m, 50W, 15kV) a hemispherical analyzer and a multichannel detector. The vacuum in the range of 1x10⁻¹⁰ torr for analysis chamber during the measurements. The combination of low energy Ar+ ions and electrons were used to neutralize surface charge for all measurements. High-resolution spectra were recorded with analyzer pass energy of 58.7 eV at the step of 0.25 eV and 50 ms time per step. The Origin 8.5 peak fit pro software is used to deconvolution of Gaussian peaks for elemental analysis.

Results and discussion

The XRD pattern (Fig. **1a)** of PLD grown La₂Ni_{1-x}Fe_xMnO₆ where x=0, 0.1,0.2 and 0.3 thin films were films prepared at 700 °C with O2 pressure 20 mbar are crystalline in nature. The reflection at 23°, 32.6°, 47°, 52.6°, 58° indicates 012, 110, 024, 122, 3-14 hkl planes of La₂Ni_{1-x}Fe_xMnO₆ (PDF 01-072-8297) with the space group R-3. The estimated lattice parameters for R-3 are a= 5.498A°, b= 5.498A°, c=13.376A°, α = 90°, β = 90°, γ =120°, cell volume V= 350A° ³ and density ρ = 6.98. The substrate peaks were observed at 29° for Pt and 69° for Si for all compositions of La₂Ni₁₋xFexMnO₆ thin. The La₂Ni_{0.8}Fe_{0.2}MnO₆sample shows better crystallinity as compare to La2NiFeMnO6, La2Ni0.9Fe0.1MnO6and La₂Ni_{0.7}Fe_{0.3}MnO₆ samples with weak reflections. The earlier reports suggest the R-3 single phase formation for La₂NiMnO₆ annealing temperature below 800°C in O₂ ambience [33].

Fig. 1a. X-ray diffraction pattern of PLD grown La₂Ni_{1-x}Fe_xMnO₆ where x = 0, 0.1, 0.2 and 0.3 thin film samples annealed at 750°C in O₂ ambience.

The Raman spectra (Fig. 1b) of La₂Ni_{1-x}Fe_xMnO₆ PLD grown thin films samples with x = 0 to 0.3. The two well separated peaks were observed in the spectral range 518-534 cm⁻¹ and 656-667 cm⁻¹ for antisymmetric stretching (AS) and symmetric stretching (S) modes of vibrations respectively. For rhombohedral R-3 symmetry the possible 24 (12Ag+12Bg) modes are Raman active. It also exhibits additional weak and broad peaks in the spectral range1170-1308 cm⁻¹ at higher frequency suggests that overtone of fundamental modes of vibrations. Here it is observed that La2Ni1-xFexMnO6 thin films samples exhibit shift in the peak position as well as broadening of peak as the Fe substitution increases from 0 to 0.3. The peak position shifting and broadening might be due to increasing Fe substitution at B site. It may introduce antisite defects and antisite phase boundary (APB) which leads to increase in disordering of Fe substituted La₂NiMnO₆ thin film samples. The periodic positions of Mn and Ni interchange in A2BB'O6 lattice due to Fe substitution. The above results are in good agreement with earlier reports [20,21]. This is further confirmed by XPS analysis which shows the presence of Fe³⁺ and Mn³⁺ states in Fe substituted samples.

Fig. 1b. Room-temperature Raman spectra of PLD grown $La_2Ni_{1-x}Fe_xMnO_6$ where x=0, 0.1, 0.2 and 0.3, thin film samples annealed at 750°C in O_2 ambience.

The energy states of La3d, Mn2p, Ni2p, Fe2p and O1s XPS spectra of all La₂Ni_{1-x}Fe_xMnO₆ where x=0, 0.1, 0.2 and 0.3, thin film samples were recorded. The atomic percent of the elements were calculated from the obtained XPS data. The substitution of Fe transition metal at B site reduces the atomic % of Ni and Mn. The decrease in atomic % of Ni (B site) and Mn (B' site) may be attributed to antisite substitution of Ni and Mn ions. Fig. 2a show the XPS of La3d, Ni 2p, Mn2p, Fe 2p and O1s of the Fe substituted samples. Here we observed that the

Copyright © 2017 VBRI Press

XPS spectrum of La3d (**Fig. 2a**) peaks were located at 833.38 eV / 837.6 eV (La $3d_{5/2}$) and 850.2 eV / 854.4 eV(La $3d_{3/2}$) states. It shows the mixing of La3d and Ni 2p satellite peaks in the spectrum. The spin-orbit splitting of La 3d level is 17 eV shows no chemical shift after Fe substitution in La₂NiMnO₆. The peak positions suggest the La ions present in 3⁺ state. These values were observed for the double perovskites quite close to the values of pure lanthanum oxide (La₂O₃) [**34, 35**].

Fig. 2a. XPS spectrum of La3d and Ni 2p mixing of states with no chemical shift in $La_2Ni_{1,x}Fe_xMnO_6$ samples, **b.** XPS of O 1sfor $La_2Ni_{1,x}Fe_xMnO_6$ thin film samples annealed at 750°C in O₂ ambience.

Advanced Materials Letters

Oxygen 1s (Fig. 2b) show two peaks located at 529 eV and 531.1 eV and surface absorbed O_2 ions. The O 1s shows shoulder broadening due the presence of NiO, FeOOH content in La₂Ni_{1-x}Fe_xMnO₆ thin film samples. The oxygen peaks shoulder broadening is increased as the Fe substitution increases it suggest increase in non-lattice oxide similar trend observed in Fe 2p spectra in La₂Ni_{1-x}Fe_xMnO₆ thin film samples [41, 42].

Fig. 3. XPS of Mn 2p (de-convoluted to Mn_2O_3 and MnO_2 Guassian fit) of (a) Mn2p of $La_2NiMnO_6(b)$ Mn2p of $La_2Ni_{0.9}Fe_{0.1}MnO_6$ (c) Mn2p of $La_2Ni_{0.8}Fe_{0.2}MnO_6$ d) Mn2p of $La_2Ni_{0.7}Fe_{0.3}MnO_6$.

Fig. 4. XPS of mixed La3d and Ni2p peaks (deconvoluted to NiO, Ni₂O₃ and Ni(OH)₂) (a) Ni2p of La₂NiMnO₆(b) Ni2p of La₂Ni_{0.9}Fe_{0.1}MnO₆(c) Ni2p of La₂Ni_{0.8}Fe_{0.2}MnO₆ d) Ni2p of La₂Ni_{0.7}Fe_{0.3}MnO₆.

The XPS of Mn 2p (**Fig. 3(a, b, c and d**)) peaks located at 642.1 eV (Mn2p_{3/2}) and 653.6 eV (Mn2p_{1/2}). The deconvolution of the 2p_{3/2} and 2p_{1/2} peaks to Gaussian fit shows the Mn₂O₃ and MnO₂ bulk are at 641.3 and 642.2 eV, respectively. The parameters are tabulated in **Table I** (supplementary data) and they show the peak shifting, Mn₂O₃ and MnO₂ peak positions. The spin orbit splitting **Copyright © 2017 VBRI Press** between asymmetric main peak $2p_{3/2}$ and $2p_{1/2}$ is nearly 11.1 eV. The peak located at 641.3 eV is assigned to Mn^{3+} ions, while the peak located at 642.2 eV is assigned to Mn^{4+} ions.The quantification of Mn 2p XPS shows higher fraction of Mn^{3+} ions as compare to Mn^{4+} ions in La₂Ni_{1-x}Fe_xMnO₆ samples [**36-39**].

The XPS of mixed La3d and Ni2p (**Fig. 4(a, b, c and d)**) peaks located at 850.2 eV (La $3d_{3/2}$) and 654.4 eV (Ni $2p_{3/2}$) states. The de-convolution of Ni $2p_{3/2}$ Gaussian peak fit shows the presence of NiO, Ni₂O₃ and Ni(OH)₂ peaks at 854eV, 855eV and 856.4 eV in La₂Ni_{1-x}Fe_xMnO₆ thin film samples. The NiO quantity decreases as the Fe substitution increases in La₂NiMnO₆ the details shown in **Table II** (supplementary data). The satellite peaks were observed at 863 eV and 872.6 eV indicates the presence of Ni²⁺ ions [**8**]. The quantification of Ni 2p spectra shows that Ni presents in high spin state and separation energy between La 3d and Ni2p is nearly 4eV.

The XPS of Fe 2p (**Fig. 5** (**a**, **b** and **c**)) located at 712 eV (Fe $2p_{3/2}$) and 724 eV (Fe $2p_{1/2}$) indicates the presence of Fe ²⁺ and Fe ³⁺ ions. The satellite peak situated at about 718.6 eV is a characteristic peak of Fe³⁺. The deconvolution Fe 2p $_{3/2}$ and Fe 2p $_{3/2}$ peaks shows presence FeOOH and Fe₂O₃ inLa₂Ni_{1-x}Fe_xMnO₆. The details of Fe 2p peak shift are tabulated in **Table III** (supplementary data) for La₂Ni_{1-x}Fe_xMnO₆ samples. The spin orbit splitting between asymmetric main peak $2p_{3/2}$ and $2p_{1/2}$ is nearly 13 eV for Fe 2p. The position of satellite peaks and above quantification of Fe 2p clearly indicates the presence Fe ³⁺ ions in La₂Ni_{1-x}Fe_xMnO₆ thin films [**40**, **41**].

Fig. 5. XPS of Fe 2p (deconvoluted to FeOOH and Fe₂O₃) (a) Fe 2p of La₂Ni_{0.9}Fe_{0.1}MnO₆ (b) Fe2p of La₂Ni_{0.8}Fe_{0.2}MnO₆ (c)Fe2p of La₂Ni_{0.7}Fe_{0.3}MnO₆.

The plot of magnetic moment M as function of temperature T (**Fig. 6a**) for $La_2Ni_{1-x}Fe_xMnO_6$ where x=0, 0.1, 0.2 and 0.3 thin film samples at 1 kOe show magnetic moment decreases with increase in Fe substitution in La_2NiMnO_6 samples. It is an evidence that magnetic disordering increases in the $La_2Ni_{1-x}Fe_xMnO_6$

thin film samples as Fe substitution increases. Table I shows the transition temperature T_c for x= 0, 0.1, 0.2 and 0.3, La₂Ni_{1-x}Fe_xMnO₆samples respectively. The higher transition temperature for La₂Ni_{0.8}Fe_{0.2}MnO₆ (0.2 Fe) might be due better morphology and crystalline structure as compare to x=0, 0.1 and 0.3, La₂Ni_{1-x}Fe_xMnO₆samples. This decrease in magnetic moment and transition temperature will be attributed to Fe^{3+} and Mn^{3+} antiferromagnetic interactions in La2Ni1-xFexMnO6 thin films. It is also observed lower transition temperature in La₂Ni_{1-x}Fe_xMnO₆thin films (Fig. 6a Inset) nearby 100K indicates presence of spin glass state and absence of ferromagnetic order at lower temperature in La2Ni1-xFexMnO6thin films.

Fig 6a. Magnetic moment M as function temperature T for La₂Ni_{1-x}Fe_xMnO₆ PLD grown thin film samples at applied field 1000 Oe. Inset shows transition temperature of La₂Ni_{1-x}Fe_xMnO₆ and (**b**) magnetic hysteresis loop at temperature 5K forLa₂Ni_{1-x}Fe_xMnO₆ PLD grown thin films.

The plot of magnetic moment (M) as function of magnetic field (H) for La₂Ni_{1-x}Fe_xMnO₆ thin film samples is shown in **Fig. 6b**. It shows ferromagnetic behavior of Fe substituted PLD grown thin films. **Table IV** (supplementary data) shows the coercive field H_c varies from 98 to 374 Oe, remnant magnetization varies from 0.27 to 0.95 $\mu_B/f.u$, saturation magnetization varies from 2.74 to 4.78 $\mu_B/f.u$ for La₂Ni_{1-x}Fe_xMnO₆thin film samples. The saturation magnetization for La₂NiMnO₆ sample nearly equals to theoretical value $5\mu_B/f.u$ (spin only

moment) whereas saturation magnetization for $La_2Ni_{1-x}Fe_xMnO_6$ samples is considerably lower than $5\mu_B/f.u.$ The significant reduction in saturation magnetization, remnant magnetization, coercive field observed as the Fe substitution level in La_2NiMnO_6 sample increases. The B site substitution results in increase in grain size, antisite defects and antisite phase boundary in Fe substituted La_2NiMnO_6 .

Sample Name	Mn2O3 Mn2p3/2 Peak eV	Min2p _{1/2} Peak eV	At%	MnO ₂ Mn2p _{3/2} Peak eV	Mn2p _{3/2} Peak eV	At%	Satellite peak eV	Separation energy eV
La ₂ NiMnO ₆ (0 Fe)	641.3	653	59	642.9	654.4	41	646.6	11
La ₂ Ni _{0.9} Fe _{0.1} MnO ₆ (0.1 Fe)	641.5	652.8	66	643.1	656.2	34	6 47.7	11.1
La ₂ Ni _{0.8} Fe _{0.2} MnO ₆ (0.2Fe)	641.1	652.8	53	643	655	57	647.1	11.2
La ₂ Ni _{0.7} Fe _{0.3} MnO ₆ (0.3 Fe)	641	652.9	64	642.7	-	36	647.6	11.3

These results are well supported by broadening of peaks and overtone modes of vibration, Oxygen vacancies, presence of NiO, Ni^{3+/}Mn³⁺ and lower transition temperature observed in M-T curve (Fig. 6a.). Similar kind of results was reported by Guo et. al [21] for La doped with Sr in La2NiMnO6 which also suggests existence of exchange bias (EB) effect in hysteresis curve, which originates from the coupling between Ni/Mn ordered FM regions and the AFM APBs derived from the antisite disorders. The earlier reports also confirm our claim presence of antisite defect and antisite phase boundary leads reduction in magnetic properties [44,45,46]. Kang et al. [47] reported that antisite disorder increases with La substitution with Sr and reduction in magnetization due to increase in APB. However, Wang et al. studied that AFM contribution or magnetization reduction is due to APB whereas antisite disorder remains unchanged for reduction in particle size. Zhou et al. [48] suggested that antisite disorder distributes over small LNMO particles.

It suggests that there could be two possible ways of reduction of saturation magnetization i) It has been observed from XPS results the presence of NiO phase which is antiferromagnetic which neglecting exchange interactions between Ni/Mn. This large volume fraction of NiO will reduce M_S by 1.5-2 $\mu_B/f.u$ [25]. ii) The Fe³⁺ and Mn³⁺ interaction will be more dominant as compare toFe²⁺-Mn⁴⁺orNi²⁺-Mn⁴⁺interaction as the Fe substitution increases in La₂Ni_{1-x}Fe_xMnO₆samples. The antisite defect and antisite phase boundary leads to Jahn Teller distortions in Fe substituted La₂Ni_{1-x}Fe_xMnO₆ thin film samples reduce the magnetic parameters of thin films [43]. The comparative Table (Table V) of magnetic parameters of previous work and current work is provided in supporting information. It also includes various methods used for La₂NiMnO₆ synthesis and crystal phase. The comparative results show the La2Ni1-xFexMnO6 is monophasic and better transition temperature T_c low saturation magnetization M_{s} compare to other samples except few.

Table V. Comparative table of magnetic parameters, synthesis and crystal phase of previous reports and current work on La_2NiMnO_6 .

Sample Name [Ref. no.]	Synthesis Method	phase	M _s (µB/f)	T _c (K)
La_2NiMnO_6 [16]	Pechini method	P21/n	3.0	270
$La_{2-x}Sr_{x}NiMnO_{6}$	Solid-state reaction	R-3m	4.2-4.8	280
La_2NiMnO_6	Sol-gel	P21/n	6.5	275
La _{1.9} Sr _{0.1} NiMnO ₆ [48]	Solid-state reaction	P21/n	2.2	280
La_2NiMnO_6 [30]	PLD	Pbnm	4.63	270
La ₂ NiMnO ₆ [27]	PLD	P21/n and R-3	4.85	270 150
$(Bi_{0.9}La_{0.1})_2NiMnO_6$ [50]	PLD	-	3.5	100
La ₂ NiMnO ₆ [51]	Solid state reaction	P21/n and R- 3c	3.571	270
$La_2Ni_{1-x}Fe_xMnO_6$	Hydroxide Co- precipitation	R-3	3.53	278

Conclusion

In summary, the La2Ni1-xFexMnO6 thin films were epitaxialy grown on Pt/Ti/Si(100) substrate at low O₂ pressure successfully. The X-ray diffraction pattern exhibits rhombohedral (R-3) phase for all samples. The XPS analysis reveals the presence of La^{3+} . NiO. Ni³⁺. Fe³⁺, Mn³⁺ states and oxygen shoulder broadening in La₂Ni_{1-x}Fe_xMnO₆ thin film samples. The shifting and broadening of stretching and antistretching peaks in Raman spectroscopy, presence of higher fraction of NiO, Oxygen vacancies and Ni³⁺/Fe³⁺-Mn³⁺ interactions leads to decrease in magnetic parameters like saturation magnetization, coercivity and remnant magnetization of La₂Ni_{1-x}Fe_xMnO₆thin film samples. It confirms that increase in Fe content increases disordering of La₂NiMnO₆ may results to antisite defects and antisite phase boundary i.e interchange Ni/Mn ionic positions in crystal lattice.

The lower transition temperature nearby 100 K suggests absence of ferromagnetic ordering and presence of spin glass state in Fe substituted La_2NiMnO_6 thin films. The study would helpful to understand effect of substitution, substrate and synthesis parameters on structural, electronic and magnetic ordering of La_2NiMnO_6 double perovskite.

Acknowledgements

Authors are thankful to INUP as "Part of the work (fabrication/characterization) was carried out at the CEN, IITB under INUP which is sponsored by DIT, MCIT, Government of India."

Author's contributions

Conceived the plan: P. M. Tirmali, S. M. Mane, S. L. Kadam, S. B. Kulkarni; Performed the expeirments: P. M. Tirmali, S. M. Mane, S. L. Kadam, S. B. Kulkarni; Data analysis: P. M. Tirmali, S. B. Kulkarni; Wrote the paper: P. M. Tirmali, S. B. Kulkarni. Authors have no competing financial interests.

Supporting information

Supporting informations are available from VBRI Press.

References

- Shimakawa, Y.; Azuma, M.; Ichikawa, N.; *Materials*, **2011**, *4*, 153-168.
 DOI:10.3390/ma4010153.
- Spaldin, N. A.; Cheong, S. W.; Ramesh, R.; *Phys. Today*, 2010,63, 38-43.

DOI: http://hpc.seu.edu.cn/dong/pdf/PT63-38-2010

- Kimura, T.; Kawamoto, S.; Yamada, I.; Azuma, M.; Takano, M.; Tokura, Y.; *Phys. Rev. B*, **2003**,67, 180401.
 DOI:<u>10.1103/PhysRevB.67.180401</u>
- Lawes, G.; Ramirez, A. P.; Varma, C. M.; Subramanian, M. A.; *Phys. Rev. Lett.*, **2003**, *91*, 257208.
 DOI:10.1103/PhysRevLett.91.257208
- Moodera, J. S.; Hao, X.; Gibson, G. A.; Meservey, R.; *Phys. Rev. Lett.*, **1988**, *61*, 637.
- DOI: 10.1103/PhysRevLett.61.637
 Gajek, M.; Bibes, M.; Barthelemy, A.; Bouzehouane, K.; Fusil, S.; Varela M.; Fontcuberta, J.; Fert, A.; *Phys. Rev. B*, 2005, 72, 020406R.
- DOI:<u>10.1038/nmat1860</u>
 Fiebig, M.; Lottermoser, T.; Frohllch, D.; Goltsev, A. V. ; Pisarev, R. V.; *Nature , London*, **2002**, *419(6990)*, 818-820.
 DOI:<u>10.1038/nature01077</u>
- Lan, C.; Zhao, S.; Xu, T.; Ma, J.; Hayase, S.; Ma, T.; J. Alloys Compd., 2016, 655, 208-214.
 DOI:10.1016/j.jallcom.2015.09.187
- DOI:10.105/0216112141.
 Wu, Z. Y.; Ma, C. B.; Tang, X. G.; Li, R.; Liu Q. X.; Chen, B. T.; Nanoscale Res. Lett., 2013, 8, 207.
 DOI:10.1186/1556-276X-8-207.
- Hashisaka, M.; Kan, D.; Masuno, A.; Takano, M.; Shimakawa, Y.; Terashima, T.; Mibu, K.; *Appl. Phys. Lett.*, **2006**,89, 032504.
 DOI: <u>10.1063/1.2226997.</u>
- Manako, T.; Izumi, M.; Konishi, Y.; Kobayashi, K. I.; Kawasaki, M.; Tokura, Y.; *Appl. Phys. Lett.*, **1999**, *74*, 2215. **DOI**:10.1063/1.123805.
- Nechache, R.; Harnagea, C.; Carignan, L. P.; Gautreau, O.; Pintilie, L.; Singh, M. P.; Ménard, D.; Fournier, P.; Alexe, M.; Pignolet A.; *J. Appl. Phys.*, 2009, 105, 061621.
 DOI:10.1063/1.3073826.
- Maiti, R. P.; Mitra, M. K.; Chakravorty, D.; AIP Conf. Proc., 2013, 1536, 1069.
- DOI:<u>10.1063/1.4810604.</u>
 15. Kazan, S.; Mikailzade, F. A.; Ozdemir, M.; Aktaş, B.; Rameev, B.; Intepe A.; Gupta A.; *Appl. Phys. Lett.*, **2010**, *97*, 072511.
 DOI:<u>10.1063/1.3481678</u>
- Choudhury, D.; Mandal, P.; Mathieu, R.; Hazarika, A.; Rajan, S.; Sundaresan, A.; Waghmare, U. V.; Knut, R.; Karis, O.; Nordblad, P.; Sarma, D. D.; *Phys. Rev. Lett.*,**2012**,*108*, 12720.
 DOI:<u>10.1103/PhysRevLett.108.127201.</u>
- Goodenough, J.; Wold, A.; Arnott, R.; Menyuk, N.; *Phys. Rev.*, 1961,124, 373-384.
 DOI:10.1103/PhysRev.124.373.
- Matti, P. R.; Mohamed A. M. A.; and Rajuru, R. R.; Advanced Ceramic Processing, 2015, ISBN 978-953-51-2203-6. DOI:10.5772/61026
- Barbosa, D. A. B.; Lufaso, M. W.; Reichlova, H.; Marti, X.; Rezende, M. V.S.; Maciel, A. P. ;Paschoal, C. W. A.; *J. Alloys* and Compounds, 2016, 663, 899-905. DOI:10.1016/j.jallcom.2015.11.099
- Tirmali, P. M.; Mane, S. M.; Patil, S. K.; Kulkarni, S. B.; J. Mater. Sci: Mater Electron, 2016, 27, 4314.

DOI:10.1007/s10854-016-4298-7.

- Guo Y.; Shi L.; Zhou S.; Zhao J.; Wang C.; Liu W.; Wei S; J. Phys. D: Appl. Phys., **2013**, *46*, 175302.
 DOI: 10.1088/0022-3727/46/17/175302
- Cao, Z.; Wang, L.; He, W.; Zeng, J.; Gao, Y.; Liu, J.; Leng, S.; J. Alloys Compd., 2014, 628, 81-88.
 DOI:10.1016/j.jallcom.2014.12.051
- Jasnamol, P. P.; Lekshmi, P. N.; Thomas, S.; Suresh K. G.; Varma, M. R.; RSC Adv., 2015, 5, 105531-105536.
 DOI:10.1039/C5RA24092A.
- 24. Wang, T.; Fang, X.D.; Dong, W.W.; Tao, R.H.; Deng, Z.D.; Li, D.; Zhao, Y.P.; Meng, G.; Zhou, S.; Zhu, X.B.; *J. Cryst. Growth*, 2008,310, 3386-3390.
 DOI: <u>10.1016/j.jcrysgro.2008.04.028</u>
- Spurgeon, S. R.; Du, Y.; Droubay, T.; Devaraj, A.; Sang, X.; Longo, P.; Yan, P.; Kotula, P. G.; Shutthanandan, V.; Bowden, M. E.; LeBeau, J. M.; Wang, C.; Sushko, P. V.; Chambers, S. A.; *Chem. Mater.*, **2016**,*28*(*11*), 3814–3822.
 DOI:10.1021/acs.chemmater.6b00829
- 26. Guo, H. Z.; Burgess, J.; Ada, E.; Street, S.; Gupta, A.; Iliev, M. N.; Kellock, A. J.; Magen, C.; Varela, M.; Pennycook, S. J.; *Phys. Rev. B: Condens. Matter Mater. Phys.*, **2008**,77, 174423. DOI:<u>10.1103/PhysRevB.77.174423</u>
- 27. Singh, M. P.; Grygiel, C.; Sheets, W. C.; Boullay, P.; Hervieu, M.; Prellier, W.; Mercey, B.; Simon, C.; Raveau, B.; *Appl. Phys. Lett.*, 2007, 91, 012503.
 DOI:<u>10.1063/1.2753715</u>
- 28. Singh, M. P.; Truong, K. D.; Jandl, S.; Fournier, P.; *Phys. Rev. B: Condens. Matter Mater. Phys.*, **2009**, *79*, 224421.**DOI**:<u>10.1103/PhysRevB.79.224421</u>
- Kitamura, M.; Ohkubo, I.; Kubota, M.; Matsumoto, Y.; Koinuma, H.; Oshima, M.; *Appl. Phys., Lett.*, **2009**, *94*, 132506.
 DOI:<u>10.1063/1.3111436</u>
- Guo, H.; Burgess, J.; Street, S.; Gupta, A.; Calvarese, T. G.; Subramanian, M. A.; *Appl. Phys. Lett.*, **2006**, *89*, 022509.
 DOI:10.1063/1.2221894
- Tian, Y. L.; Zhang, W.; Li, L.; Lin, Y. Q.; Chen, X. M; J Mater Sci: Mater Electron, 2011, 22,116–119. DOI:10.1007/s10854-010-0097-8.
- 32. Hashisaka, M.; Kan, D.; Masuno, A.; Takano, M.; Shimakawa, Y.; Appl. Phys. Lett. 2006, 89, 032504. DOI:10.1063/1.2226997.
- Dass, R. I.; Yan, J. Q.: Goodenough J. B.; Phys. Rev. B., 2003, 68, 064415.
- DOI:10.1103/PhysRevB.68.064415Yi.
- Mickevicius,S.; Grebinskij, S.; Bondarenka,V.; Vengalis, Sliuzien,B.K.; Orlowski,B.A.; Osinniy,V.; Drube,W.; J. Alloys Compd., 2006, 423, 107–111.
 DOI:http://pubdb.xfel.eu/record/78577/files/OrlowskiB0702151250 1213436%5B1%5D.pdf
- Kang, J. S.; Lee, S. M.; Kim, D. H.; Kolesnik, S.; Dabrowski, B.; Park, B.G.; Kim, J.Y.; Lee, J.; Kim, B.; Min, B. I.; *J. Appl. Phys.*, 2010, 107, 09D721.
 DOI:10.1063/1.3340448.
- Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G.E.; Handbook of X-Ray Photoelectron Spectroscopy, *Perkin-Elmer, Wellesley, MA*, 1979, 74–95.
- 37. Guo H. Z.; Gupta, A.; Appl. Phys. Lett., 2006, 89, 262503. DOI:10.1063/1.2422878
- Carver, J. C;. Schweitzer, G. K.; Carlson, T. A.; J. Chem. Phys., 1972, 57, 973–981.
 DOI:10.1063/1.1678348.
- Moulder, J. F.; Stickle, W. F; Sobol, P. E.; Bomben, K. D.; Handbook of X-ray photoelectron Spectroscopy, Physical Electronics, Inc, Eden Prairie, 1995.
- Pham, M. H.; Dinh, C. T.; Vuong, G. T.; Tab, N. D.; Do, T. O.; Phys. Chem. Chem. Phys.2014, 16, 5937. DOI:10.1039/c3cp54629b
- Biesinger, M. C.; Payne, B. P.; Grosvenord, A. P.; Laua, L. W. M.; Gerson, A. R.; Smart, R. St. C.; *Appl. Surf. Sci.*,2011, 257, 2717–2730. DOI:10.1016/j.apsusc.2010.10.051
- 42. Chen, Y. S.; Kang, J. F.; Chen, B.; Gao, B.; Liu, L. F.; Liu, X. Y.; Wang, Y. Y.; Wu, L.; Yu, H.; Y. Wang, J. Y. Chen Q.; Wang, E. G.; *J. Phys. D: Appl. Phys.*,2012, 45, 065303. DOI:10.1088/0022-3727/45/6/065303

Copyright © 2017 VBRI Press

- Menendez, N. G.; Sanchez, H. M.; Tornero, D.; Martínez, J. D.; Alonso, J. L.; J. A; Chem. Mater. 2004, 16, 3565. DOI:10.1021/cm049305t
- 44. Topwal D.; Sarma D. D.; Kato H.; Tokura Y.; and Avignon M.; Phys. Rev. B, 2006, 73, 094419.
 DOI: <u>10.1103/PhysRevB.73.094419</u>
- 45. Sarma D. D.; Sampathkumaran E. V.; Ray S.;, Nagarajan R.; Majumdar S.; Kumar Ashwani, G Nalini, TN Guru Row, Solid State Communications, 2000, 114 (9), 465-468
- 46. C. Meneghini, Sugata Ray, F. Liscio, F. Bardelli, S. Mobilio, and D. D. Sarma; *Phys. Rev. Lett.*, **2009**, *103*, 046403. DOI: <u>10.1103/PhysRevLett.103.046403</u>
- 47. Kang J.S.; Lee H. J.; Kim D. H.; Kolesnik S.; Dabrowski B.; Świerczek K.; Lee J.; Kim B.; and Min B. I.; Phys. Rev. B, 2009, 80, 045115
 DOI:10.1103/PhysRevB.80.045115
- 48. Zhou S. M.; Guo Y. Q.; Zhao J. Y.; Zhao S. Y.; and L. Shi, Appl. Phy. Lett, 2010, 96, 262507. DOI: 10.1063/1.3459141
- 49. Mao Y.; Parsons J.; McCloy J.; Nanoscale, 2013, 5, 4720
 DOI: 10.1039/c3nr00825h
- 50.E. Langenberg; J. Rebled; S. Estrade; C. J. M. Daumont; J. Ventura; L. E. Coy; M. C. Polo; M. V. García-Cuenca; C. Ferrater,1 B. Noheda; F. Peiro; M. Varela; and J. Fontcubert; , *Phy. Rev. B*, **2012**, *86*, 085108.
 - DOI: 10.1103/PhysRevB.86.085108.
- Kumar P.; Ghara, S.; Rajeswaran B; Muthu DVS. Sundaresan, A.; Sood A. K.; *Solid State Comm.*, **2014**, *184*, 47-51. DOI:<u>10.1016/j.ssc.2014.01.002</u>

Copyright © 2017 VBRI Press AB. Sweder

Advanced Materials Letters is an official international journal of International Association of Advanced Materials (IAAM, www.iaamonline.org) published monthly by VBRI Press AB from Sweden. The journal is intended to provide high-quality peer-review articles in the fascinating field of materials science and technology particularly in the area of structure, synthesis and processing, characterisation, advanced-state properties and applications of materials. All published articles are indexed in various databases and are available download for free. The manuscript management system is completely electronic and has fast and fair peer-review process. The journal includes review article, research article, notes, letter to editor and short communications.

www.vbripress.com/aml

Supporting information

Table II: Ni 2p spectral fitting parameters peak position, atomic % and separation energy of $La_2Ni_{1-x}Fe_xMnO_6$ thin film samples.

Sample Name	NiO Ni2p _{3/2} Posts	At%	Ni ₂ O ₅ Ni2p _{5/2} Pools	At%	Ni(OH)2 Ni2p3/2 Paols	Ať%	Satellite peak	Separation energy
	eV		eV		eV		eV	eV
La ₂ NiMnO ₆ (0 Fe)	853.7	67	856.1	32	-	-	-	4.2
$La_{2}Ni_{0.9}Fe_{0.1}MinO_{6}~(0.1Fe)$	854.4	74	855	24			863 873	4.3
$La_{2}Ni_{0.8}Fe_{0.2}MinO_{6}\;(0.2\;Fe)$	854.2	63	854.8	37	-	-	862.5	4.4
$La_{2}Ni_{0.7}Fe_{0.3}MnO_{6}\;(0.3\;Fe)$	853.7	75	855.6	24	857.3	0.83	872.3 861.7 871.8	4.5

Sample Name	Fe2O3 Fe2p3/2 Peak eV	Fe2p _{1/2} Peak eV	At%	FeOOH Fe2p _{5/2} Peak eV	Fe2p _{1/2} Peak eV	At%	Satellite peak eV	Separation energy eV
$La_{2}Ni_{0.9}Fe_{0.1}MnO_{6}~(0.1Fe)$	710.8	723.9	49	712.4	-	51	718.1	13.1
$La_{2}Ni_{0.8}Fe_{0.2}MinO_{6}~(0.2~Fe)$	710.6	723.8	100	-	-	-	716.5	13.2
$La_{2}Ni_{0.7}Fe_{0.3}MinO_{6}~(0.3~Fe)$	710.1	723.4	<mark>6</mark> 0	712.6	-	40	717.3	13.3

Table IV: Magnetic parameters of La₂Ni_{1-x}Fe_xMnO₆ thin film samples.

Sample Name	Coercive field H_{c} (Oe)	Saturation magnetization Ms (µ _B /fu)	Remnant Mag netization Mr (µ _B /f.u)	Transition Temperature Tc (K)
La ₂ NiMnO ₆ (0 Fe)	374	4.78	0.95	262
La2Ni0.9Fe0.1MnO6 (0.1 Fe	229.65	3.53	0.76	260
La2Ni0.8Fe0.2MmO6 (0.2Fe)	171.63	3.36	0.35	278
$La_2Ni_{0.7}Fe_{0.3}MinO_6$ (0.3 Fe	98	2.75	0.27	255