www.vbripress.com/aml, DOI: 10.5185/amlett.2016.5918

Published online by the VBRI Press in 2016

# Correlation selection of perovskites with optimal parameters

## N. Mykytenko<sup>1</sup>, A. Kiv<sup>2</sup>, D. Fuks<sup>2\*</sup>

<sup>1</sup>South-Ukrainian National Pedagogical University 65020 Odessa, Ukraine <sup>2</sup>Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel

\*Corresponding author. E-mail: fuks@bgu.ac.il

Received: 29 March 2015, Revised: 18 November 2015 and Accepted: 22 January 2016

## ABSTRACT

A descriptor is constructed to predict the composition of  $ABO_3$  perovskites that do not contain transition metals and have a high level of ionic conductivity ( $\sigma$ ). The descriptor consists of two parts: the ratio of ionic radii, RA/RB and the ratio of ionization potentials, VB/VA for A- and B- cations. Parameters for 100 perovskite compounds were considered to find the correlation dependences between the descriptor and the magnitude of $\sigma$ . Correlation selection approach is proposed to reveal a suitable correlation series. This approach allows determining the composition of perovskites that has a desirable ionic conductivity. Copyright © 2016 VBRI Press.

Keywords: Perovskites; ionic transport; non-transition metals.

#### Introduction

Perovskites have been intensively studied due to their numerous applications today and wide perspectives of new applications in future [1-5]. Service characteristics, physical and chemical properties of these materials are extremely sensitive to their composition. Even slightest changes of composition of perovskites dramatically alter their properties. Therefore the improvement and modification of these materials require a long and workconsuming experimental and theoretical search. *Ab initio* calculations [6-10], and also semi-empirical methods (see, for example, [11]) are used to predict the best parameters of perovskites.

In [12] the descriptor based on the parameters of electronic structure of perovskite compounds was proposed and calculated to optimize the oxygen reduction reaction (ORR) in SOFC cathodes. This descriptor was determined as the position of center of the oxygen p-band calculated with respect to Fermi energy. It was found that this descriptor correlates well with the overall ORR activity. However, the calculation of this descriptor is considerably time-consuming.

As a rule the semi-empirical methods lead faster to practically useful results. The most well-known semiempirical approaches are based on concepts of Goldschmidt tolerance factor [13], critical radius and lattice free volume [14, 15], Pauling rules [16]. In all these cases either geometric or energy-based empirical parameters are used. The choice of the descriptor is dictated by the necessity of the strong sensitivity of considered properties of material with respect to the parameters that are chosen for the construction of a descriptor. Authors of [17] obtained criteria for the improvement of the formability of perovskite-type oxides using a structuremap technology. The map is based on two geometric parameters: octahedral factor ( $R_B/R_O$ ) and tolerance factor *t* [18] ( $R_B$  and  $R_O$  are ionic radii of B – atom and Oxygen atom in the perovskite lattice). The model was developed considering 173 ABO<sub>3</sub> compounds. It was found that the octahedral factor is as important as the tolerance factor [18] with regards to the formability of perovskite type oxides.

Series of works were directed to find the so-called Global Instability Index (GII) [19]. Authors of [20] applied the artificial neural networks (ANNs) modelling to predict GII. They showed a significant role of the bond-valence tolerance factor  $t_{BV}$  [21] in the determination of GII. Earlier the application of ANNs modelling to predict structural stability and formability of ABO<sub>3</sub> - type perovskites was realized in [22].

There are strong experimental evidences concerning the dependence of the structural stability of perovskites on the sizes of their constituent atoms. Authors of [23] studied  $R_2BaCuO_5$  compounds, with R = rare earth atom from Sm to Lu, by neutron and X-ray powder diffraction. A systematic variation of structural stability was found depending on the size of the rare earth atom.

The above mentioned and others results [24,25] show that the geometric factors as well as the energy characteristics of crystal can be used to construct the appropriate descriptor for prediction of a structural stability or a formability of perovskites. In this context we would like to note two points. The first one is that in most cases the simultaneous use of geometric and energy parameters for the construction of descriptor are almost no found. The second one is that the constructed descriptors are mainly aimed to predict the structural stability or the formability of

## Mykytenko, Kiv and Fuks

perovskites but not their physical and service characteristics.

In [26] we described an approach for the search of ABO<sub>3</sub> perovskites with high rates of ionic transport. The ionic transport in perovskites with transition metals (TM) at B – site was considered in terms of the theory of coordination compounds. The stability of these materials is sensitive to the values of the effective charge of the ions of TM (Z\*) and to the electronegativity ( $\chi$ ) of the surrounding cations (ligands). This is because the stability is determined by the splitting parameter  $\Delta$  for degenerated *d*-levels, which in turn is proportional to Z\* $\cdot \chi$ . Thus the transition element determine to considerable extent the stability of perovskite lattice and hence the processes of defect formation including the formation of vacancies.

On the basis of these considerations the descriptor for the ionic transport rate in perovskites with TM was defined as product  $Z^* \cdot \chi$ .

At the same time the perovskites with only nontransition elements also exhibit useful properties such as, for example, a high ionic conductivity. Analysis of published works showed that in this case the energy characteristics of valence electrons of cations at both A and B sites determine the bonding and stability of perovskites. For some compounds the promotion of *s*-and *p*-electrons to d-states occurs. For example, this effect is observed in perovskites, which include Bismuth. These perovskites attract attention due to their wide practically important applications [27-32]. In [27, 31] a theoretical model is presented for electronic structure of BaBiO<sub>3</sub> compound. By treating two types of Bi with different electron configurations  $(6s^26p^36d^0(I) \text{ and } 7s^06p^36d^0(II))$ , i.e. differently ionized Bi atoms, Bi<sup>5+</sup> and Bi<sup>3+</sup>, and using LMTO-ASA approach total and partial densities of states for electrons were obtained for  $Ba_4Bi_4O_{12}$  supercell [31]. The promotion of electrons to Bi (I)-6d and less pronounced promotion in the case of Bi (II)-6d was revealed. This example demonstrates that for perovskites with non-transition elements the stability of the lattice should be determined by the energy characteristics of valence electrons of cations both at A- and B- sites that are responsible for the bonding in these compounds. Keeping in mind the fact that atomic radii mismatch may lead to the decomposition of the solid solutions the geometry characteristics of these cations should be also included in consideration.

The earlier descriptor (based on effective charge and electronegativity) designed for  $ABO_3$  type perovskites having transition metals at B site does not work for the  $ABO_3$  materials with non-transition metals.

In the present work, unlike [26], we studied ABO<sub>3</sub> perovskites that contain only non-transition elements. A new descriptor that includes the ionization potentials for valence electrons of A and B cations and their ionic radii is constructed.

Applying this descriptor we found a good correlation for predicting the composition of compounds with high ionic conductivity.

**Table 1**. Parameters for the descriptor  $\Delta$  and the ionic conductivity of perovskites ( $R_A$  and  $R_B$  are in pm,  $V_A$  and  $V_B$  are in eV).

| No       | Comnound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R.    | V.         | Rn    | Vn     | Ιοσσ     | Δ.    | <b>Aa</b> | ^    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-------|--------|----------|-------|-----------|------|
| 1        | Laosta (Gao Mar 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195   | * A<br>802 | 134   | 1736.4 | -0.5[33] | 0.04  | 0.16      | 0.24 |
|          | $(La_{0.72}Nd_{0.08})_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100   | 002        |       | 1750.1 | 0.5[04]  | 0.00  | 0.10      | 0.21 |
| 2        | O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 199   | 802        | 134   | 1736.4 | -0.6[34] | 0.02  | 0.16      | 0.2  |
| 3        | $Nd_{0.9}Ca_{0.1}Al_{0.9}Co_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 184.5 | 794.6      | 125   | 1662.1 | -1.0[33] | 0.03  | 0.1       | 0.16 |
| 4        | $Nd_{0.9}Ca_{0.1}Al_{0.9}Si_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 196   | 723.1      | 134   | 1417.6 | -1.0[33] | 0.04  | 0.04      | 0.12 |
| 5        | $Nd_{0.9}Ca_{0.1}Al_{0.9}Be_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 196   | 750        | 133   | 1552.3 | -1.0[33] | 0.03  | 0.07      | 0.13 |
| 6        | $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195.5 | 803        | 134   | 1736.4 | -1.0[33] | 0.04  | 0.16      | 0.24 |
| 7        | $(La_{0.9}Nd_{0.1})_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195.2 | 765.8      | 134   | 1656.4 | -1.1[34] | 0.04  | 0.16      | 0.24 |
| 8        | $Nd_{0.9}Ca_{0.1}Al_{0.9}Zn_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 184.5 | 794.6      | 126   | 1673.6 | -1.2[33] | 0.04  | 0.11      | 0.23 |
| 9        | (La <sub>0.9</sub> Cd <sub>0.1</sub> ) <sub>0.8</sub> Sr <sub>0.2</sub> Ga <sub>0.8</sub> Mg <sub>0.2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 194.8 | 762        | 134   | 1656.4 | -1.3[34] | 0.05  | 0.17      | 0.27 |
| 10       | (La <sub>0.9</sub> Y <sub>0.1</sub> ) <sub>0.8</sub> Sr <sub>0.2</sub> Ga <sub>0.8</sub> Mg <sub>0.2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 194.8 | /53        | 134   | 1656.4 | -1.4[34] | 0.05  | 0.17      | 0.27 |
| 12       | $La_{0.9}Sr_{0.1}Ga_{0.9}In_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195.5 | 823        | 132.5 | 1/85.4 | -1.4[33] | 0.02  | 0.17      | 0.21 |
| 12       | Sm - Ca - AlO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 184.5 | 812.2      | 125   | 1912   | -1.4[35] | 0.03  | 0.25      | 0.29 |
| 14       | Shi (Ca) AlO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 175.5 | 997        | 125   | 1712   | 1.5[25]  | 0.02  | 0.25      | 0.27 |
| 15       | Gdo seCao 1 sAlO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180   | 879.6      | 125   | 1713   | -1.5[36] | 0.06  | 0.05      | 0.23 |
| 16       | (Lag a Yha 1) a stra 2 Gaa s Mga 2 O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 194.4 | 767        | 134   | 1656.4 | -1.6[35] | 0.05  | 0.05      | 0.25 |
| 17       | La $_0$ Sr $_0$ (Ga $_0$ Sin $_1$ O Sin $_1$ O Sin $_2$ O Sin | 195   | 813        | 133   | 1825.4 | -1.7[37] | 0.02  | 0.24      | 0.28 |
| 18       | La <sub>0.8</sub> Sr <sub>0.2</sub> GaO <sub>2.9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 196   | 803.4      | 130   | 1840   | -2.0[38] | 0.01  | 0.29      | 0.31 |
| 19       | La <sub>0.9</sub> Sr <sub>0.1</sub> Sc <sub>0.9</sub> Mg <sub>0.1</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 195.5 | 803        | 140   | 1526.2 | -2.0[37] | 0.11  | 0.1       | 0.32 |
| 20       | Nd <sub>0.9</sub> Ca <sub>0.1</sub> Al <sub>0.5</sub> Ga <sub>0.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 184.5 | 794.6      | 127.5 | 1876.5 | -2.0[33] | 0.05  | 0.24      | 0.34 |
| 21       | $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.115}Co_{0.085})O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 196   | 803.4      | 135.5 | 1795.3 | -2.0[37] | 0.05  | 0.23      | 0.33 |
| 22       | $Nd_{0.9}Ca_{0.1}Al_{0.9}Ni_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 184   | 784.6      | 128   | 1696.2 | -2.0[33] | 0.07  | 0.16      | 0.3  |
| 23       | $Nd_{0.9}Ca_{0.1}Al_{0.9}Be_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 185.5 | 794.6      | 115   | 1674.5 | -2.0[33] | 0.11  | 0.11      | 0.33 |
| 24       | $La_{0.9}Sr_{0.1}GaO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 195.5 | 803        | 130   | 1840   | -2.0[38] | 0.01  | 0.29      | 0.31 |
| 25       | La <sub>0.5</sub> Sr <sub>0.5</sub> Ga <sub>0.7</sub> Zr <sub>0.3</sub> O <sub>2.875</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 187.5 | 804        | 138.8 | 1574   | -2.0[39] | 0.15  | 0.08      | 0.38 |
| 26       | La <sub>0.9</sub> Sr <sub>0.1</sub> InO <sub>2.95</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 195.5 | 803        | 145   | 1694   | -2.1[39] | 0.15  | 0.11      | 0.41 |
| 27       | $La_{0.9}Sr_{0.1}Ga_{0.9}AI_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195.5 | 803        | 125   | 1825.3 | -2.1[33] | 0.06  | 0.27      | 0.39 |
| 28       | $La_{0.9}Sr_{0.1}Ga_{0.9}Mg_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195.5 | 803        | 128   | 1788.2 | -2.1[33] | 0.06  | 0.23      | 0.35 |
| 29       | Pr <sub>0.9</sub> Ca <sub>0.1</sub> AIO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/4.5 | /82.8      | 125   | 1/13   | -2.1[40] | 0.11  | 0.19      | 0.41 |
| 21       | La <sub>0.5</sub> Sr <sub>0.5</sub> Ga <sub>0.7</sub> Zr <sub>0.3</sub> U <sub>2.9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 197.5 | 804        | 137.5 | 1820   | -2.1[39] | 0.06  | 0.27      | 0.39 |
| 22       | La <sub>0.5</sub> Sr <sub>0.5</sub> Ga <sub>0.75</sub> Zr <sub>0.25</sub> U <sub>2,925</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 215   | 712.6      | 159   | 1/00   | -2.1[39] | 0.08  | 0.15      | 0.31 |
| 32       | BaZio allo a Constanti della d                                                                                                                                                                                                             | 215   | 722.6      | 155   | 1224   | 2.2[20]  | 0.11  | 0.09      | 0.31 |
| 34       | Balna aCaa 1O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 215   | 732.6      | 135.5 | 1611.3 | -2,2[39] | 0.09  | 0.2       | 0.35 |
| 35       | CaCeo a Ero 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 174.5 | 867.6      | 125.5 | 1611.5 | -2.3[33] | 0.03  | 0.14      | 0.36 |
| 36       | BaZra Ina Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 215   | 732.6      | 155   | 1620   | -2.5[55] | 0.11  | 0.21      | 0.43 |
| 37       | BaZro 4Ino 6O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 215   | 742.6      | 155   | 1398   | -2.4[39] | 0.11  | 0.12      | 0.36 |
| 38       | $Nd_{0.9}Ca_{0.1}Al_{0.9}Ga_{0.1}O_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 174.5 | 734.6      | 125   | 1725.7 | -2.4[41] | 0.1   | 0.35      | 0.45 |
| 39       | Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ga O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180   | 794.6      | 125   | 1840   | -2.4[41] | 0.06  | 0.32      | 0.44 |
| 40       | $Nd_{0.9}Ca_{0.1}Al_{0.9}Cu_{0.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 184.5 | 794.6      | 136   | 1696.8 | -2.4[42] | 0.15  | 0.14      | 0.44 |
| 41       | $Na_{0.9}Ca_{0.1}Al_{0.5}Ga_{0.5}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180   | 763.2      | 127.5 | 1726.5 | -2.4[43] | 0.09  | 0.26      | 0.44 |
| 42       | BaCe <sub>1-y</sub> Y <sub>y</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 215   | 735        | 154   | 1296.6 | -2.4[39] | 0.1   | 0.24      | 0.44 |
| 43       | SrTi <sub>0.9</sub> Al <sub>0.1</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 185   | 955        | 138.5 | 1711   | -2.5[40] | 0.16  | 0.21      | 0.52 |
| 44       | $La_{0.9}Sr_{0.1}In_{0.9}Mg_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195.5 | 803        | 145.5 | 1716.8 | -2.5[39] | 0.16  | 0.14      | 0.46 |
| 45       | $Na_{0.9}Ca_{0.1}Al_{0.7}Ga_{0.3}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180   | 753.2      | 126.5 | 1751.1 | -2.6[41] | 0.08  | 0.32      | 0.48 |
| 46       | $Na_{0.9}Ca_{0.1}Al_{0.2}Ga_{0.8}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180   | 733.2      | 129   | 1714   | -2.6[41] | 0.1   | 0.34      | 0.44 |
| 47       | La <sub>0.9</sub> Sr <sub>0.1</sub> AlO <sub>2.95</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 195.5 | 800        | 125   | 1890   | -2.6[33] | 0.06  | 0.36      | 0.48 |
| 48       | La <sub>0.9</sub> Ca <sub>0.1</sub> GaO <sub>2.95</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 193.5 | 739        | 130   | 1840   | -2.7[33] | 0.01  | 0.49      | 0.51 |
| 49       | Ba <sub>3</sub> In <sub>2</sub> CeO <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 197   | 795.6      | 125   | 1840   | -2.7[33] | 0.08  | 0.31      | 0.47 |
| 50       | Nd <sub>0.9</sub> Sr <sub>0.1</sub> GaO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196   | 832.6      | 135   | 1840   | -2.7[39] | 0.15  | 0.2       | 0.5  |
| 51       | NdGa <sub>0.9</sub> Mg <sub>0.1</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 185   | 786.5      | 132   | 1848,2 | -2.7[44] | 0.1   | 0.34      | 0.54 |
| 52       | BaZr <sub>0.2</sub> In <sub>0.8</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 215   | 732.0      | 155   | 1/46   | -2.7[45] | 0.11  | 0.38      | 0.5  |
| 55       | BaCe <sub>(1-z-y)</sub> Zf <sub>z</sub> Y <sub>y</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 215   | 732        | 159   | 1288   | -2.8[45] | 0.15  | 0.25      | 0.55 |
| 55       | $DdCe(1-z-y-p)ZI_z I_yPI_pO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180   | 733        | 125   | 1200.4 | -2.0[43] | 0.15  | 0.25      | 0.55 |
| 56       | Nac a Cao 1 Alo a Gao a Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180   | 733.2      | 125   | 1750.4 | -2.0[44] | 0.07  | 0.39      | 0.53 |
| 57       | Nda aCaa (AlO) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 184   | 784        | 128   | 1893   | -2.9[39] | 0.06  | 0.41      | 0.53 |
| 58       | $La_0 Sr_0 SGa_0 Zr_0 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 197.5 | 804        | 145   | 1388.2 | -2.9[39] | 0.14  | 0.27      | 0.56 |
| 59       | Nd0.9Ca0.9Al0.9Be0.1O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 195.5 | 803        | 115   | 1493   | -3.0[33] | 0.2   | 0.14      | 0.54 |
| 60       | La <sub>0.9</sub> Ba <sub>0.1</sub> Al O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 197   | 705.6      | 125   | 1713   | -3.0[39] | 0.08  | 0.43      | 0.59 |
| 61       | $Sr_{0.9}Ba_{0.1}Sc_{0.6}Al_{0.3}Mg_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 197   | 800        | 145.5 | 1366   | -3.0[39] | 0.15  | 0.29      | 0.59 |
| 62       | $BaCe_{0.9}Gd_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 215   | 735        | 150.5 | 1140   | -3.0[46] | 0.07  | 0.45      | 0.59 |
| 63       | SrSc <sub>0.65</sub> Al <sub>0.35</sub> Al <sub>0.5</sub> O <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180   | 955        | 125   | 1477.5 | -3.0[39] | 0.06  | 0.45      | 0.57 |
| 64       | $BaZr_{0.7}In_{0.3}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 215   | 746.6      | 155   | 1225   | -3.1[39] | 0.11  | 0.36      | 0.58 |
| 65       | BaZr <sub>0.6</sub> In <sub>0.4</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 215   | 752.6      | 155   | 1217   | -3.1[39] | 0,11  | 0.38      | 0.6  |
| 66       | $Na_{0.9}Ca_{0.1}GaO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180   | 753.2      | 133   | 1740   | -3.1[47] | 0.15  | 0.31      | 0.61 |
| 67       | La <sub>0.9</sub> Ca <sub>0.1</sub> Al O <sub>2.95</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 193.5 | 725        | 125   | 1813   | -3.2[39] | 0.05  | 0.5       | 0.6  |
| 68       | Sr <sub>0.9</sub> Ba <sub>0.1</sub> Sc <sub>0.6</sub> Al <sub>0.4</sub> Al <sub>0.5</sub> -> O <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 191   | 800        | 133   | 1245   | -3.2[39] | 0.07  | 0.45      | 0.59 |
| 09<br>70 | La0.7Ba0.3ALO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190.5 | 705.7      | 125   | 1813   | -3.3[47] | 0.02  | 0.57      | 0.61 |
| 70       | $Nd_{0.9}Ca_{0.1}Al_{0.9}Mg_{0.1}O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 184   | 730.6      | 127.5 | 1822.4 | -3.4[33] | 0.06  | 0.49      | 0.61 |
| 72       | Ndo Sto 1 A10 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 186.5 | 712 6      | 128   | 1866   | -3.4[39] | 0.00  | 0.49      | 0.01 |
| 72       | Sec. Al. Al. O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155   | 045        | 107   | 1260   | 2 4[20]  | 0.01  | 0.02      | 0.04 |
| 74       | SrSco Alo 4 Mgo 1 O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 165   | 945        | 113   | 1356   | -3.4[39] | 0.04  | 0.55      | 0.64 |
| 75       | BaZro sIno 2Oa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 215   | 732.6      | 155   | 1148   | -3 5[39] | 0.11  | 0.43      | 0.65 |
| 76       | Sr2ScAle SZno 2O4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 185   | 781.3      | 136   | 1840   | -3.6[39] | 0.14  | 0.36      | 0.64 |
| 77       | Nia 9Bao 1 GaO2 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195.5 | 843        | 135   | 1220.3 | -3.6[39] | 0.05  | 0.55      | 0.65 |
| 78       | La0.5Sr0.5Ga0.55Zr0.45 O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 197.5 | 844        | 126.5 | 1248.4 | -3.7[39] | 0.06  | 0.52      | 0.64 |
| 79       | SrSc <sub>0.5</sub> Al <sub>0.4</sub> Zn <sub>0.1</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 155   | 955        | 108.5 | 1420   | -3.7[39] | 0.07  | 0.51      | 0.65 |
| 80       | SrSc <sub>0.5</sub> Al <sub>0.45</sub> Mg <sub>0.05</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 155   | 955        | 112.5 | 1533.5 | -3.8[39] | 0.13  | 0.39      | 0.65 |
| 81       | SrSc <sub>0.5</sub> Al <sub>0.35</sub> Mg <sub>0.15</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 155   | 955        | 109.5 | 1454.5 | -3.8[39] | 0.9   | 0.48      | 0.66 |
| 82       | SrSc <sub>0.5</sub> Al <sub>0.45</sub> Zn <sub>0.05</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 155   | 955        | 111   | 1488,9 | -3.8[39] | 0.11  | 0.44      | 0.66 |
| 83       | SrSe <sub>0.5</sub> Al <sub>0.45</sub> Y <sub>0.05</sub> Al <sub>0.5</sub> O <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155   | 955        | 104.2 | 1498   | -3.8[39] | 0.11  | 0.43      | 0.65 |
| 84<br>05 | SrSc <sub>0.5</sub> Al <sub>0.4</sub> Y <sub>0.1</sub> Al <sub>0.5</sub> O <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 155   | 955        | 105   | 1350   | -3.8[39] | 0.03  | 0.59      | 0.65 |
| 85<br>86 | Sr0.8Ba0.2SC0.5Al0.5O2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 203   | 798        | 143   | 1213   | -3.9[39] | 0.09  | 0.48      | 0.66 |
| 60<br>97 | ING0.9Ca0.1AI0.9S10.1 O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 183.5 | /53        | 128.5 | 1895.5 | -4.0[33] | 0.08  | 0.51      | 0.67 |
| 0/<br>90 | SLOC0.55AI0.45 AI0.5U2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 225   | 2010       | 144.2 | 1984.1 | -4.0[39] | 0.05  | 0.55      | 0.67 |
| 00<br>80 | BaZra alma (O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188   | 121.3      | 120   | 1813   | -4.0[39] | 0.07  | 0.51      | 0.05 |
| 07<br>00 | St. Pa. So. Al. O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 215   | 122.0      | 142   | 1222   | 4 2[207  | 0.00  | 0.44      | 0.00 |
| 7U<br>Q1 | St Seo us Voor Ale -Or -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 191   | 000        | 145   | 1525   | -4.3[39] | 0.1/  | 0.34      | 0.08 |
| 92       | StSco 4 Yo 1 Alo CO 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 175   | 955        | 135   | 1618   | -4.5[30] | 0.21  | 0.31      | 0.72 |
| 93       | SrSco sAlo sO2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 175   | 935        | 142.5 | 1995   | -4,7[39] | 0.027 | 0,13      | 0,67 |
| 94       | NdAlO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170   | 766.5      | 130   | 1913   | -5.0[33] | 0.19  | 0.49      | 0.87 |
| 95       | Cd0.9Ca0.1AlO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175   | 988.5      | 135   | 1413   | -5.0[47] | 0.21  | 0.57      | 0.99 |
| 96       | SrZrO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200   | 806.8      | 155   | 1955   | -5.4[33] | 0.21  | 0.42      | 1.05 |
| 97       | Y <sub>0.9</sub> Ca <sub>0.1</sub> AIO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170   | 1689       | 125   | 1713   | -6.0[47] | 0.06  | 0.99      | 1.11 |
| 98       | BaZnO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 163.5 | 709        | 125   | 1913   | -6.0[39] | 0.19  | 0.69      | 1.07 |
| 99       | BaZrO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 215   | 722.6      | 165   | 1955   | -6.1[39] | 0.2   | 0.7       | 1,10 |
| 100      | BaCen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 215   | 735        | 184   | 1099.4 | -7.0[45] | 0 33  | 0.5       | 1 16 |

## Experimental

Goal seek of descriptor for perovskites with only non- transition metals

The descriptor approach allows speeding up a creation of new materials with desired properties. The main requirements to descriptors are:

- A descriptor should be closely related with the property of interest;
- The descriptor changes and the changes of the material property should be well correlated;
- The above correlation should be kept for a certain interval of the material property changes;
- The calculations for the construction of descriptor should be as easy as possible.

In fact all geometry parameters in descriptors indirectly linked to energy characteristics of crystal. Interatomic distances linked to the bonding energy through the overlap integrals. Goldschmidt tolerance factor, critical radius and lattice free volume are determined indirectly by the parameters of the corresponding potentials of interatomic interaction.

In this work we propose a combined descriptor starting from the fact that in all cases the geometric parameters (sizes of A and B – cations, interatomic distances) as well as energy characteristics (ionization potentials of A and B cations, parameters of band structure) in conjunction determine the perovskite properties. Constructing this descriptor we have chosen as the main parameters the ionic radii (RA and RB) and the mean potential of valence electrons (VA and VB) for cations A and B. In the case of mixed perovskites (if there is more than one A or B cations) the values of radii and potentials are taken as a weighted sum with the atomic fractions of constituents on the specific sites. For each cation the ionization potential is taken as the average for all electrons involved in the valence bonds. For predicting the composition of compounds with high level ionic conductivity ( $\sigma$ ) we have constructed a descriptor containing two parts: the ratios RA/RB and VB/VA. Parameters for 100 perovskite compounds that were considered are presented in Table 1. The source for conductivity data is cited in the brackets in Table 1. The ionic radii and ionization potentials of the components of complex perovskites that are necessary to calculate RA, RB, VA and VB presented in **Table 1** are taken from **[48, 49**].

One can see that the largest values of ionic conductivity ( $\sigma$ ) correspond to the cases when RA/RB=1.5 and VB/VA=2. We denote the deviations from these optimal values as:  $\Delta_1$  and  $\Delta_2$ .  $\Delta_1 = |1.5 - \text{RA/RB}|$ ;  $\Delta_2 = |2 - \text{VB/VA}|$ . The proposed descriptor is introduced as  $\Delta = k\Delta_1 + \Delta_2$  where k is a fitting parameter that accounts the unequal role of geometric and energy parameters of A and B – cations in formation of compound properties.

We show that this descriptor allows a forecasting the composition of perovskites with a large value of ionic conductivity.

#### **Results and discussion**

In **Fig. 1** a good correlation between  $\sigma$  and  $\Delta$  (for k = 2) is demonstrated in a wide range of  $\sigma$  (log $\sigma$ :  $-7 \div -0.5$ ). To

compare the role of the energy and geometric parameters in descriptor we analyzed separately the correlations " $\sigma - \Delta_1$ " and " $\sigma - \Delta_2$ ". It was found that these correlations in the same interval of  $\sigma$  are much worse in comparison with correlation " $\sigma - \Delta$ ". Moreover, we obtained that a correlation " $\sigma - \Delta_2$ " is better than a correlation " $\sigma - \Delta_1$ ". Hence, it follows that the influence of energy parameters of A and B cations on ionic conductivity of considered perovskites is stronger in comparison with geometry parameters.



**Fig. 1.** Correlation dependence between  $\log \sigma$  and  $\Delta$ .

To get a better value for correlation coefficients in cases "log  $\sigma - \Delta_1$ " and "log  $\sigma$ -  $\Delta_2$ " we excluded a part of compounds from the list in **Table 1**. It turned out that we had to exclude more compounds in the case "log  $\sigma - \Delta_1$ " in comparison with the case "log  $\sigma - \Delta_2$ ". As a result of this selection procedure the good correlation dependences shown in **Fig. 2** were obtained. The correlation graphs are intersected, and the intersection point corresponds to log  $\sigma = -0.82$ . It means that the best values of  $\sigma$  should be expected for compounds in the vicinity of the intersection point for two lines  $\Delta_1$  and  $\Delta_2$ .

**Table 2.** Division of the list of compounds (Table 1) into the intervals of  $\Delta$ .

| No | Δ           | $\mathbf{R}^2$ |
|----|-------------|----------------|
| 1  | 0.24 - 0.38 | 0.3352         |
| 2  | 0.38 - 0.50 | 0.6821         |
| 3  | 0.50 - 0.73 | 0.7887         |
| 4  | > 0.73      | 0.8097         |

The list of compounds in **Table 1** was analyzed with respect to the ratio of correlation coefficients for different intervals of  $\Delta$ . The correlation coefficients were calculated for intervals  $\Delta$  shown in **Table 2**. One can see that for the region of larger magnitudes of  $\sigma$  the obtained correlations are worse. It follows that the correlation series should be selected based on the desired values of  $\sigma$ . For example in

the first interval of  $\Delta$  (**Table 2**) to improve the correlation the number of compounds in the given interval  $\Delta$  should be increased or some compounds should be excluded as shown in **Table 3**.



**Fig. 2.** Correlation dependences "log  $\boldsymbol{\sigma}$  -  $\Delta_1$ " (circles) and "log  $\boldsymbol{\sigma}$  -  $\Delta_2$ " (squares).

Table 3. Correlation selection of perovskites for interval 1 from Table 2.

| No | Removed compound                                        | $\mathbf{R}^2$ |
|----|---------------------------------------------------------|----------------|
| 2  | $(La_{0.72}Nd_{0/08})_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3$ | 0.3903         |
| 7  | $(La_{0.9}Nd_{0.1})_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3$   | 0.7696         |
| 9  | $(La_{0.9}Cd_{0.1})_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3$   | 0.9066         |
| 16 | $(La_{0.9}Yb_{0.1})_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3$   | 0.9476         |

In **Table 3**, as an example, we present a list of compounds that had to be excluded in order to increase the correlation coefficient in the first interval from **Table 2**. It can be seen that these compounds include the largest number of elements: two A – elements and three B – elements. We can assume that in these cases the averaging of parameters (RA, RB, VA, and VB) in the calculation of the descriptor is not quite correct.

#### Conclusion

A descriptor which allows selecting perovskites with large values of ionic conductivity is constructed. This descriptor is a combination of radii and potentials of ionization of A and B cations in ABO<sub>3</sub> perovskites with only non-transition elements.

An approach of the correlation selection of perovskite compounds is proposed for the improvement of the correlation series and revealing compounds with deviating properties. Two ways to realize the proposed approach are demonstrated: lengthening the correlation series and exclusion of inappropriate compounds. The resulting correlation series allows determining a composition of perovskites with the desirable ionic conductivity.

#### Reference

 Dell, R.M.; Hooper, A. *in: Solid Electrolytes*, eds. P. Hagenmüller, W. van Gool, Academic Press: NY, **1978**, 291.
 **DOI:** 10.1016/B978-0-12-313360-1.50002-X

- Riess, I. *in: Science and Technology of Fast Ion Conductors*, eds. H.L. Tuller, M. Balkanski, **1987**, Plenum Press: NY, 23. **DOI:** 10.1007/978-1-4613-0509-5
- Sammells, A.F.; Cook, R.L.; While, J.H.; Osborne, J.J.; Mac-Duff, R.C. Solid State Ionics 1992, 52, 111. DOI: 10.1016/0167-2738(92)90097-9
- Deng, H.; Zhou, M.; Abeles, B. Solid State Ionics 1994, 74, 75.
   DOI: 10.1016/0167-2738(94)90439-1
- Anderson, M. T.; Vaughey, J. T.; Poeppelmeier, K. R. Chem. Mater. 1993, 5, 151.
- **DOI:** <u>10.1021/cm00026a003</u>
  Fuks, D.; Bakaleinikov, L.; Kotomin, E.A.; Felsteiner, J.; Gordon, A.; Evarestov, R.A.; Gryaznov, D.; Maier, J. *Solid State Ionics*
  - **2006**, *177*, 217. **DOI:** <u>10.1016/j.ssi.2005.10.014</u>
- Mekam, D.; Kacimi, S.; Djermouni, M.; Azzouz, M.; Zaoui, A. Results in Physics 2012, 2, 156. DOI: <u>10.1016/j.rinp.2012.09.008</u>
- Daga, A.; Sharma, S. Journal of Modern Physics 2012, 3, 1891. DOI: <u>10.4236/jmp.2012.312238</u>
- He, Y.; Galli, G. Chem. Mater. 2014, 26, 5394.
   DOI: 10.1021/cm5026766
- 10. Ono, Sh. *Entropy* **2013**, *15*, 4300. DOI: 10.3390/e15104300
- 11. Garai, J. J. Appl. Phys. 2007, 102, 123506. DOI: 10.1063/1.2822458
- Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. DOI: <u>10.1021/jp047349j</u>
- Müller, J.; Roy, R. Acta Cryst. B 1975, 31, 2944.
   DOI: 10.1002/crat.19750100724
- Shannon, R. D. Acta Cryst. A 1976, 32, 751. DOI: <u>10.1107/S0567739476001551</u>
- Pauling, L. J. Amer. Chem. Soc. 1927, 49, 765. DOI: <u>10.1021/ja01402a019</u>
- Kumar, A.; Verma, A.S.; Bhardwaj, S.R. Open Applied Physics Journal 2008, 1, 11.
   DOI: 10.2174/1874183500801010011
- 17. Reaney, I.M.; Ubic, R. *Ferroelectrics* **1999**, *228*, 23. **DOI:** 10.1080/00150199908226123
- Yao, W.; Tang, Z.; Zhang, Z.; Luo, S.; Li, J.; Tan, Q. Mater. Sci. and Eng. 2003, B99, 309.
   DOI: 10.1016/S0921-5107(02)00560-3
- Yu, G.; Chen, J.; Zhu, L. in: Knowledge Acquisition and Modeling, Second International Symposium on knowledge acquisition and modelling 2009, 2, 189.
   DOI: 10.1109/KAM.2009.98
- Zhang, Y.M.; Evans, J.R.G.; Yang, S. Philosophical Magazine 2010, 90, 4453.
- DOI: 10.1080/14786435.2010.510452
  21. Salinas-Sanchez, A.; Garcia-Munoz, J.L.; Rodrigues-Carvajal, J.; Saez-Puche, R.; Martinez, J.L. J. Sol. State Chemistry 1992, 100, 201.
  DOI: 10.1016/0022-4596(92)90094-C
- Stølen, S.; Bakken, E; Mohn, C.E. Phys. Chem. Chem. Phys. 2006, 8, 429.
   DOI: 10.1039/B512271F
- Zongping, Sh.; You, C.; Guoxing, X.; Shishman, Sh.; Weishen, Y. Chinese Science Bulletin 2000, 45, 889.
   DOI: 10.1007/bf02886194
- 24. Giaquinta, D.M.; Loye, H.C. *Chem. Mater.* **1994**, *6*, 365. **DOI:** <u>10.1021/cm00040a007</u>
- Kazius, J.; Nijssen, S.; Kok, J.; Bäck, T.; Izerman, A.P. J. Chem. Inf. Model. 2006, 46, 597.
   DOI: 10.1021/ci0503715
- Fuks, D.L.; Kiy, A. E. Adv. Mat. Lett. 2013, 4, 328.
   DOI: 10.5185/amlett.2012.10432
- 27. Rice, T.M.; Sneddon, L. Phys Rev. Lett. **1981**, *47*, 689. **DOI:** <u>10.1103/PhysRevLett.47.689</u>
- Thonhauser, T.; Rabe, K.M. *Phys. Rev. B* 2006, 73, 212106. DOI: <u>10.1103/PhysRevB.73.212106</u>
- Puchkov, A.V.; Timusk, T.; Karlow, M.A.; Cooper, S.L.; Han, P.D.; Payne, D.A. *Phys. Rev. B* 1996, *54*, 6686.
   DOI: <u>10.1103/PhysRevB.54.6686</u>

#### **Research Article**

- Klinkova, L.A.; Uchida, M.; Matsui, Y.; Nikolaichik, V.I.; Barkovskii, N.V. *Phys. Rev. B* 2003, 67, 140501(R). DOI: 10.1103/PhysRevB.67.140501
- Shen, Y.; Zhu, Z.; Huang, M. Commun. Theor. Phys. 1998, 30, 387. DOI: 10.1088/0253-6102/30/3/387
- Hayashi, H.; Inaba, H.; Matsuyama, M.; Lan, N.G.; Dokiya, M.; Tagawa, H. Solid State Ionics 1999, 122, 1. DOI: 10.1016/S0167-2738(99)00066-1
- 33. Kendall, K.R.; Navas, C.; Thomas, J.K.; Loye, H. *Solid State Ionics* **1995**, *82*, 215.
- **DOI:** <u>10.1016/0167-2738(95)00207-4</u>
  34. Sinha, A.; Näfe, H.; Sharma B.P.; Gopalan, P. J. Electrochem. Soc. **2008**, *155*, 309.
- DOI: 10.1149/1.2829877
  35. R. H. Gallasso, *Perovskites Modern and Ancient*, Ontario, Almas press, 2002.
  DOI: 10.1107/S0021889803001420
- Ishihara, T.; Matsuda, H.; Takida, Y. J. Am. Chem. Soc. 1994, 116, 3801.
- **DOI:** 10.1021/ja00088a016
  37. Belzner, A.; Gur, T.M.; Huggins, R.A. Solid State Ionics 1992, 57, 327.
- DOI: 10.1016/0167-2738(92)90166-M
- Ishihara, T. Bull. Chem. Soc. Japan 2006, 79, 1155.
   DOI: <u>10.1246/bcsj.79.1155</u>
- Iwahara, H. Library congress control number 2008936301, Springer, Dordrecht, Heidelberg, London, New York, p. 31.
   DOI: <u>10.1007/978-0-387-77708-5</u>
- Melnik, J.; Luo, J.; Chuang, K.T.; Sanger, A.R. Open Fuels and Energy Science Journal 2008, 1, 7. DOI: 10.2174/1876973X00801010007
- Wu, J. Defect Chemistry and Proton Conductivity in Ba-based Perovskites, Thesis in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Caltech, 2005. URL:http://resolver.caltech.edu/CaltechETD:etd-12062004-232639
- Hariharan, R.; Prasanna, T.R.S.; Gopalan, P. Scripta Materialia 2012, 66, 658.
- DOI: <u>10.1016/j.scriptamat.2012.01.036</u>
  43. Oshima, K.; Tanaka, T.; Yabe, E.; Kikuchi, Y.; Sekine, Y. *Fuel* 2013 *107* 879
- **DOI:** 10.1016/j.fuel.2013.01.058
- Manthiram, A.; Kuo, J.F.; Goodenough, J.B. Solid State Ionics 1993, 62, 225.
   DOI: 10.1016/0167-2738(93)90376-E
- Xu, L.; Wencong, L.; Chunrong, P.; Qiang, S.; Jin, G. Comp. Mater. Sci. 2009, 46, 621.
- DOI: <u>10.1016/j.commatsci.2009.04.047</u>
  46. Iwahara, H. *Solid State Ionics* **1992**, *52*, 99.
  DOI: 10.1016/0167-2738(92)90095-7
- Ishihara, T.; Matsuda, H.; Takita, Y.; Solid State Ionics 1995, 79, 147.
  - DOI: 10.1016/0167-2738(95)00054-A
- 48. <u>http://periodictable.com/Properties/A/AtomicRadius.v.html</u>
- 49. https://dept.astro.lsa.umich.edu/~cowley/ionen.htm

