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ABSTRACT 

As host materials, phosphate compounds offer great potential for lanthanides to display luminescence characteristics. In this 
work luminescence behaviour of Na2CaP2O7:RE

3+
 are presented for the first time. Na2CaP2O7 novel phosphors activated with 

the trivalent rare earth ions ((RE = Ce, Eu, Tb, Sm) were synthesized by solid state diffusion method.  Phosphors were 
characterized for phase purity and luminescent properties. The emission and excitation spectra were followed to explore the 
luminescence attributes. The as prepared powders of Ce

3+
, Eu

3+
,Tb

3+
 and Sm

3+
  doped Na2CaP2O7  emit near-uv, red, green and 

orange reddish light as result of f-d and f-f  transitions respectively. The study is novel as no such luminescence data are 
available for this compound. The results are promising in view of the requirement for pc-white LEDs for solid state lighting 
applications. Copyright © 2014 VBRI press. 
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Graphical abstract 
 

 
 
Chromaticity diagram of Na2CaP2O7:RE

3+
 (RE = Eu, Tb, Sm) phosphors. The three crosses in the figure show chromaticity 

values corresponding to Na2CaP2O7:Eu
3+

, Na2CaP2O7:Tb
3+

 and Na2CaP2O7:Sm
3+

 phosphors, respectively. 
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Introduction  

With increase in cognizance among people are searching 
for novel technologies to minimize consumption of global 
electrical energy and render environment-friendly 

illumination and display devices [1]. As an ideal energy 
preserving, potential and eco-benign candidate for general 
lighting, white light-emitting diodes (w-LEDs) have drawn 
considerable attention due to their high efficiency, 
compactness, long functional lifetime, and relatively highly 
energy saving and are gradually substituting traditional 

light sources [2]. The maximum efficiency of a commercial 
high-power white LED is currently about 30% (100 lm W

-1
 

efficacy), which is six times greater than the efficiency of a 
filament light bulb and 50% better than that of a compact 
fluorescent lamp. Nowadays, the most widely followed 
method to have white light emission is the coupling of a 
blue InGaN LED chip and a yellow phosphor (YAG: Ce

3+
).  

Even though the approach is cost-effective and efficient, it 
is accompanied by poor color rendering index (CRI) and 
insufficient color temperature in illumination applications. 
Now this di-chromatic (yellow-blue) approach white LED 
has been developed to a tri-chromatic white LED by 
coupling the near-ultraviolet (n-UV) or ultraviolet (UV) 
LED with blue and yellow phosphors with more red 
components or the red, green, and blue (RGB) multi-phased 

phosphors, to achieve higher CRI and color tenability [3-5]. 
However, it is a bit hard to get a requisite red inorganic 

phosphor for tri-chromatic white LEDs, for the generally 
employed red emitting phosphor for white LEDs is 
Y2O2S:Eu

3+
 This phosphor is chemically unsound and its 

fluorescent efficiency is grimmer than that of the 
BaMgAl10O17:Eu

2+
 and ZnS: Cu+, Al

3+
 (green-emitting) 

phosphors. Red phosphors based on nitride family have 
exhibited high stability and therefore have got attraction but 
due to costly preparation conditions of high temperatures, 
high nitrogen pressure and the synthesis method is limited 

[6, 7]. In flat panel displays, field emission displays (FEDs) 
have received sound attention due to their unique 
advantages, such as thin panel thickness, self emission, 
distortion-free images, wide viewing angle, quick response 
and low power consumption.  Moreover, tri-chromatic 
white LEDs and tricolor phosphors are also regarded as 
essential constituents in FEDs. In spite of the fact that the 
traditional red sulfide-based phosphors Y2O2S: Eu

3+
 have 

been used as potential low voltage phosphor for FEDs, the 
excitability of sulfur makes the cathodes to degenerate and 
as a result reduce the luminous efficiency, which restricts 
their practical use in FEDs.  Thus, in order to enhance the 
working capability of FEDs and white LEDs, it is 
imperative to produce novel red-emitting phosphors with 
excellent physical and chemical stabilities, and higher 

efficiencies [8, 9].  
Owing to the excellent thermal stabilities, good charge 

stabilities and low sintering temperature phosphate 
compounds have gained very much attention in luminescent 
materials. Rare earth activated phosphates usually have 
wide luminescent properties, typically, LaPO4: Ce

3+
, Tb

3+
 

;(Y, Gd) (P, V)O4: Eu
3+ 

; Sr5(PO4)2Cl: Eu
2+

 etc., find 
extensive use as commercial phosphor materials in solid 
state lighting. It is well known that beta phased Ca3(PO4)2 
and its derivatives are important phosphates that have been 
widely studied for their potential applications including 
their ferroelectric properties, ionic solid electrolyte 
conductivity bioceramics thermally stimulated 
luminescence (TSL) or thermoluminescent dosimeters 
(TLD) for X-rays and potential phosphors for w-LEDs. 
Trivalent rare-earth ions such as cerium (Ce

3+
), europium 

(Eu
3+

), samarium (Sm
3+

) and terbium( Tb
3+

) have been 
realized as potential activators in many good phosphors due 
to their 4f

1
5d

0
 → 4f5d

1
, 

5
D0 →

7
FJ(J = 0,1,2,3,4) ,

 4
G5/2→ 

6
HJ (J 

=5/2, 7/2, 9/2) and 
5
D4 →

7
FJ(J = 5,6)  transitions respectively. The 

Ce
3+

 ion has the [Xe] 4f
1 

configuration, which results in 
only two 4f

1
 energy levels: the 

2
F5/2 and 

2
F7/2 state. These 

energy levels are approximately 2000 cm
-1

 apart. At higher 
energy, the 4f

0
5d

1
 bands can be found. The energy of the 

bands is strongly dependent on the host lattice.  The 
photoluminescence emission of europium ion is highly 
affected by the site symmetry occupied by the Eu

3+
 in the 

crystal structure. In many luminescent materials, when it is 
located at a noncentrosymmetric site, Eu

3+
 can generate 

high quality red emission corresponding to the 
5
D0–

7
F2 

transition. Terbium (Tb
3+

) ions are important Ln
3+

 ions for 
their characteristic green emission, which is most often 
initiated by UV excitation. For instance, as a result of 
strong absorption in ultraviolet region, YPO4: Tb

3+
 has 

been found to be a suitable phosphor for PDP applications. 
Sm

3+
 luminescence is generally known by three main 

emissions viz 562nm (
4
G5/2 → 

6
H5/2), 600nm (

4
G5/2→ 

6
H7/2), 

650nm (
4
G5/2→ 

6
H9/2) and there is another small peak at 
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706nm (
4
G5/2→ 

6
H11/2) respectively [10-13]. Hence keeping 

the above attributes of RE
3+

 ions in focus, in this work we 
therefore report on Ce, Eu, Tb and Sm activated 
Na2CaP2O7 phosphors. The work is novel because no such 
study on this compound existed before. The 
photoluminescence properties of Na2CaP2O7 :RE

3+
 suggest 

that this phosphor could turn out to be a useful component 
for white LEDs in solid state lighting applications. 

 

Experimental  

Na2CO3 (Qualigens Excel R), CaCO3 (Qualigens Excel R), 
(NH4) H2PO4 (Qualigens Excel R) (NH4)2Ce(NO3)6(Merck 
GR), Tb4O7 (Loba 99.99%), Sm2O3(Loba 99.99%) and 
Eu2O3 (Loba 99.99%). Na2CO3, Na2CO3, CaCO3, (NH4) 
H2PO4, (NH4)2Ce(NO3)6, Tb4O7, Sm2O3and Eu2O3 were 
used as the starting precursors. The Na2CaP2O7: RE

3+
 (RE 

= Ce, Tb, Eu, Sm) phosphors were prepared by the high 
temperature solid state reaction. The reactants were mixed 
stoichiometrically. The raw materials were ground for more 
than half an hour, using agate mortar and pestle. Finally, the 
crushed mixtures were fired at 750 

o
C for 12 hours 

followed by slow cooling to room temperature. The 
samples at room temperature were taken out and used for 
characterizations such as powder X-ray diffraction and 
photoluminescence measurements. For brevity m% is 
written for mole% (mole percent).    

 Phase purity of the host compound was identified by 
powder X-ray diffraction (XRD) (X’-pert. Pro Analytical 
X-ray Diffractometer with Cu Kα = 1.5406 Å). Excitation 
and emission spectra were measured using RF-5301PC 
Shimadzu Spectrofluorophotometer with slit width 1.5 nm. 
All measurements were performed at room temperature. 
 

 
 

Fig. 1. X--ray powder diffraction pattern of Na2CaP2O7 and JCPDS 
standard card No.48-0557. 

 

Results and discussion 

XRD analysis 

To analyse the crystalline nature and phase purity and to 
specify whether the compound has any identical data 
available so that its complete formation can be affirmed, 
powder X-ray diffraction of Na2CaP2O7 was carried out. 
The XRD pattern of Na2CaP2O7 along with JCPDS file is 

shown in Fig. 1. Well match between the as prepared 
compound and the JCPDS data (file no. 48-0557) was 

observed. 
 

(a)

(b)

 
 

Fig. 2. PL excitation (a) and PL emission (b) spectra of 
Na2CaP2O7:Ce

3+
 phosphor. 

 
Optical properties 

The Ce
3+

 ion has the [Xe] 4f
1 
configuration, which results in 

only two 4f
1
 energy levels: the 

2
F5/2 and 

2
F7/2 state. These 

energy levels are approximately 2000 cm
-1

 apart. At higher 
energy, the 4f

0
5d

1
 bands can be found. The energy of the 

bands is strongly dependent on the host lattice. 

 Fig. 2a represents excitation spectrum of Na2CaP2O7: 
Ce monitored at 369 nm. Two peaks 270 nm and 314 nm 
can be seen due to f-d transition. Excitation spectrum is 
broad through transition of electron from one subshell to 
different subshell. The concentration of cerium activator 
was varied between 0.1m% and 5m% and the highest PL 

emission intensity was observed at 2m% (Fig. 2b). As 

shown in Fig. 3 (b), the PL emission spectra show an 
orange-red emission bands peaking at 592 and 615nm 
under 257 and 395 nm excitations. The PL excitation 

spectrum (Fig. 3(a)) shows a broad peak spanning from 
246 to 280 nm, which can be attributed to charge transition 
between Eu

3+
→ O

2-
 ions. Whilst sharp lines from 320 to 
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500 nm are due f→f transitions of Eu
3+

 ions. The excitation 
spectrum was monitored at 615 nm. The intensity ratio 
between magnetic dipole transition and electric dipole 
transition seems to be identical thereby indicating that Eu

3+
 

ion has occupied both the centrosymmetric as well as non-
centrosymmetric sites in the Na2CaP2O7 lattice. Other deep 
red emission corresponding to 

5
D0 →

7
FJ (J=4, 5, 6) transitions 

could also be seen. No concentration quenching of 
photoluminescence was seen as the population of Eu

3+
 

impurity in Na2CaP2O7 host changed [14-19].  
 

(a)

(b)

 
 

Fig. 3. PL excitation (a) and PL emission (b) spectra of 
Na2CaP2O7:Eu

3+
 phosphor. 

 

 As depicted in Fig. 4(a), UV excitation spectrum 
observed at 546 nm emission wavelength of Na2CaP2O7 
doped withTb

3+
 consisting of a broad band as well as some 

sharp lines. The broad band is due to f-d interaction while 
sharp lines are due to f-f transitions. The emission spectrum 

(Fig. 4 (b)) has sharp lines on account of f–f transition of 
Tb

3+
 ions. The emission spectrum usually has major 

contribution from 
5
D4–

7
FJ (J= 6, 5, 4, 3) but a weak peak 

around 434 nm due to 
5
D3–

7
FJ(J= 6, 5, 4, 3) can also be seen. 

The nature of 
5
D4 → 

7
FJ transitions is governed by the 

selection rule ∆J = ±1 for electric dipole and ∆J = 0, ±2 for 
magnetic dipole transitions respectively. As depicted in 

Fig. 4(b), the emission intensity of 
5
D3 level is very weak 

and weakens further with increasing Tb
3+

 concentration, 

followed by the enhancement of the emission from the 
5
D4 

level. This occurs due to non-radiative cross-relaxation via 
the resonant energy transfer process between 

5
D3 and 

5
D4 

levels. As the concentration of Tb
3+

 is changed, the cross-
relaxation effect becomes stronger, which enhances the 
intensity of green emission at 545 nm.  
 

(a)

(b)

 
 

Fig. 4. PL excitation (a) and PL emission (b) spectra of 
Na2CaP2O7:Tb

3+
 phosphor. 

 
Furthermore, other reason has been assigned to weak 
luminescence from 

5
D3 level is the lack of phonon energy of 

the host. The smaller the phonon energy of the host at 
diluted concentrations of terbium ions, the lower will be the 
5
D3 emission intensity and vice versa [20-24].  Sm

3+
 with 

4f
5
 configuration has very complex energy levels and 

several transitions are possible between these 4f levels. 
Highly selective transitions between these f levels results in 

narrow line spectra. As shown in Fig. 5(a), the excitation 
spectra of Na2CaP2O7: Sm

3+ 
consists of many sharp lines 

starting from 300 nm to 450 nm. The whole the excitation 
spectrum peaks can be attributed to Sm

3+
 ions. Unlike 

Eu
3+

– O
2-

 interaction, no CT band corresponding to Sm
3+

– 
O

2−
 interaction was observed in Na2CaP2O7: Sm

3+ 
  system 

as can be seen in Fig. 5(a).This excitation spectra was 
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monitored at emission wavelength 600 nm. We observed 
that among various excitation wavelengths, Sm

3+
 doped 

Na2CaP2O7 phosphors could preferentially be excited by 
405 nm as it results in intense orange reddish light around 
600 nm. As this excitation wavelength 405 nm is quite far 
away from mercury (254 nm) we assume that this phosphor 
will turn out to be eco-friendly.  
 

(a)

(b)

 
 

Fig. 5. PL excitation (a) and PL emission (b) spectra of 
Na2CaP2O7:Sm

3+
 phosphor. 

 
 Intense absorption at 405 nm also indicates that 
Na2CaP2O7: Sm

3+ 
phosphors can be effectively excited by 

near UV LEDs. The excitation wavelength 405 nm 
corresponds to 

6
H5/2 → 

4
K11/2 transition of Sm

3+
 ions. The 

reddish orange light of Sm
3+

 possesses three emission peaks 

(Fig. 5(b)) in the visible region near 564, 600, and 647 nm, 
which are associated to the intra f-f subshell transitions 
from the excited level 

4
G5/2 to ground levels 

6
H5/2, 

6
H7/2, and 

6
H9/2, respectively.   The first one at 564 nm (

4
G5/2→ 

6
H5/2) 

is a magnetic-dipole transition, the second at 600 nm 
(

4
G5/2→ 

6
H7/2) is a partly magnetic and partly a forced 

electric-dipole transition, and the other at 650 nm (
4
G5/2 

→
6
H9/2) is purely electric dipole transition which is 

sensitive to the crystal field [25-29]. Therefore, it suggests 
that the Na2CaP2O7:RE

3+
 (RE = Ce

3+
, Eu

3+
, Tb

3+
, Sm

3+
) 

phosphors can be efficiency excited by UVLEDs (350–400 
nm). In order to see how much promising the 
photoluminescence characteristics of Na2CaP2O7: RE

3+ 
phosphors are in view of the CIE (Commission 
Internationaldel’E´ clairage (CIE) 1931) Chromaticity 

diagram (Fig. 6).  
 
 

 
 
 

Fig. 6. CIE diagram for Na2CaP2O7:RE
3+

 (RE = Eu, Tb, 
Sm) phosphors. Note the three crosses in the Fig. show 
chromaticity values corresponding to Na2CaP2O7:Eu

3+
, 

Na2CaP2O7:Tb
3+

 and Na2CaP2O7:Sm
3+

 phosphors 
respectively. 
 
The Chromaticity Coordinates of Na2CaP2O7:Eu

3+
 

phosphors were computed to be x = 0.51, y = 0.34. For 
Na2CaP2O7: Tb

3+
 and Na2CaP2O7: Sm

3+
 CIE coordinates 

were found to be x =0.24, y = 0.65 and x = 0.55, y = 0.42 
respectively. These parameters were estimated as per the 

emission spectra in Na2CaP2O7 (λexc = 396 nm, 370 nm & 
405 nm) for Eu

3+
, Tb

3+
 & Sm

3+
 ions respectively. It was 

noticed that these values are almost in the vicinity of NTSC 
standard values (x = 0.67, y = 0.33) and some other 

reported data [30]. 
 

Conclusion 

Na2CaP2O7:RE
3+

 (RE = Ce
3+

, Eu
3+

, Tb
3+

, Sm
3+

) phosphors 
were successfully synthesized through well known solid 
state diffusion method. Characteristic luminescence was 
manifested when rare earth ions diffused into the 
Na2CaP2O7 system. Ce

3+
, Eu

3+
, Tb

3+
 and Sm

3+
 occupy both 

symmetric as well as non-symmetric sites in Na2CaP2O7 
lattice. Intense absorption in NUV region for Na2CaP2O7: 
RE

 3+
 phosphors suggest that they could be effectively 

excited by LEDs emitting in the NUV region. The 
Chromaticity Coordinates were found to be x = 0.51, y = 
0.34, x =0.24, y = 0.65 and x = 0.55, y = 0.42 for Eu

3+
, 

Tb3+ and Sm
3+

 doped Na2CaP2O7 phosphors respectively. 
The CIE coordinates of Na2CaP2O7: RE

 3+
 fall in the 

vicinity of white region. The entire photoluminescence 
results indicate that Na2CaP2O7: RE

3+
 phosphors might turn 

out to be a vital member of pc-white LEDs for solid state 
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lighting devices. As the excitation wavelengths (314,380, 
396 nm & 405 nm) of Na2CaP2O7: RE

3+
 are quite far away 

from mercury (254 nm), we assume that these phosphors 
will turn out to be eco-friendly. 
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