www.amlett.com, www.amlett.org, DOI: 10.5185/amlett.2013.fdm.10

Effect of La and Pb substitution on structural and electrical properties of parent and La/Pb co doped BiFeO₃ multiferroic

Poorva Sharma, Dinesh Varshney*

Materials Science Laboratory, School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore 452001, India

*Corresponding author. Tel: +91-731-2467028; E-mail: vdinesh33@rediffmail.com; poorva.aks@gmail.com

Received: 06 January 2013, Revised: 24 March 2013 and Accepted: 16 April 2013

ABSTRACT

La/Pb co-doped BiFeO₃ compounds were prepared by a solid-state reaction. X-ray diffraction of BiFeO₃ (BFO), Bi_{0.725}La_{0.1}Pb_{0.175}FeO₃ [BLPFO] showed single phase in nature. BFO crystallize in the rhombohedral distorted perovskite structure (space group-*R3c*) while to that BLPFO crystallize in distorted pseudocubic (*Pm*-3*m*) symmetry which has been confirmed by the Rietveld refinement of the room temperature X-ray powder diffraction data. The effect of La/Pb substitution on dielectric constant, and loss tangent, of the samples was studied at room temperature in a wide range of frequency 10 Hz – 1 MHz. The room temperature dielectric constant of BFO (BLPFO) was ≈ 120 (200). Ferroelectric measurement reveals remnants polarization of BLPFO is about 0.24 μ C/cm² at an applied field of 15 kV/cm. Weak ferroelectric effect is observed for co-doped BiFeO₃ compound. Copyright © 2014 VBRI press.

Keywords: Multiferroics; X-ray diffraction; dielectric properties; ferroelectric loop.

Poorva Sharma did M. Sc. in Physics (2005) and M. Phil. in Physics (2007) from "School of Studies in Physics- Vikram University Ujjain" M. P. Currently she is pursuing Ph.D. in Physics (Experimental condensed matter) under the guidance of Dr. Dinesh Varshney from Devi Ahilya University, Indore, India. Her area of interest includes synthesis procedure, structural, magnetic, and electrical characterizations of multiferroics and manganites.

Dinesh Varshney is Professor at School of Physics, Devi Ahilya University, Indore. He pursued higher studies as ICTP-TRIL fellow at the Scuola Normale Superiore, Pisa and University of Loughborough. As an academic achiever with contributions in Science and Technology, he earn Dr. Kailash Nath Katju Award for Sciences in 2007; Bharat Jyoti Award and Certificate of Excellence in 2011; Poster Award for poster research paper contribution at 55th DAE-SSPS in 2010, First

Best Research Scientist award of Devi Ahilya Vishwavidyalaya from MPCST Bhopal in 2009, National Indian Science Congress Award Young Scientist award in 1998, Int. Academy of Physical Sciences Young Scientist award in 1997 and M. P. State Young Scientist award in 1994. He is an author of more than 300 peer reviewed research papers in Journals of international repute. He has delivered several invited talks, chair sessions in national and international conferences and workshops including 02 invited talks at DAE- SSP Symposium. During his teaching research endeavor of 25 years, he has supervised 26 Ph. D. Scholars. His active field of interest is physical, chemical and mechanical properties of magnetic, semiconducting, superconducting, metal oxides materials.

Introduction

Multiferroic materials have become an object of interest due to coexistence of two or more of the possible ferroic orders occur simultaneously in single-phase material [1]. The multiferroism is indeed a subject of intense research because of their wide range of potential applications, information-storage device, spintronics, including magnetoelectric sensor devices and multiple-state memories. Among various multiferroic materials investigated so far, BiFeO₃ is widely studied due to coupling between ferroelectric and magnetic order at room temperature and causing the possibility of room temperature multiferroic devices. In BiFeO₃, $6s^2$ lone pair of Bi³⁺ ion introduces an off-center distortion results in a spontaneous polarization, whereas the super exchange interactions between Fe³⁺ ions determine magnetic ordering in this material [2]. The single phase $BiFeO_3$ exhibits a rhombohedrally distorted perovskite structure (space group R3c) with high Curie temperature ($T_{\rm C} \sim 1103$ K) and antiferromagnetic Neel temperature ($T_N \sim 643$ K) [3, 4].

It has been earlier observed that partial substitution of rare-earth (RE) or alkaline earth metal ions (Sr) at Bi-site of BiFeO₃ [5-7] helps in eliminating the secondary phase

along with a structural phase transformation and improving the ferroelectric and ferromagnetic properties. A structure phase transition from rhombohedral to orthorhombic is observed in Bi_{1-x}La_xFeO₃ near x = 0.30 and enhances the magnetoelectric interaction [5]. For Nd doped BiFeO₃ a rhombohedral structure at x = 0, a triclinic structure between x = 0.05-0.15, and a pseudotetragonal structure between x = 0.175-0.2 is observed [6]. Furthermore, the replacement of Bi³⁺ by Sr²⁺ leads to a change of the lattice symmetry from the rhombohedrally distorted perovskite of BiFeO₃ to the cubic of SrFeO_{2.97} and results in oxygen deficiency in the lattice [7]. The Bi_{0.9-x}La_{0.1}Nd_xFeO₃ (x =0.05-0.1) ceramics showed an induced phase transition from rhombohedral to triclinic and monoclinic on subsequent Nd and La doping [8].

For $Bi_{1-x}Pb_xFeO_3$, $0 \le x \le 0.30$ prepared by solid-state reaction route, phase transition from pseudotetragonal to observed pseudocubic symmetry is [9]. The pseudotetragonal symmetry for x = 0 and pseudocubic symmetry for x = 0.2 agree well with earlier reported data. However, Bi_{0.8}La_{0.2-x} Pb_xFeO₃, showed gradually change in crystal structure from pseudotetragonal to pseudocubic symmetry with Pb substitution increases from x = 0.0 to 0.2 as prepared by sol-gel process [10]. Looking to the technological importance and quest for revealing the substitutional effect at A(Bi)-site, we prepared BiFeO₃ [BFO] and Bi_{0.725}La_{0.1}Pb_{0.175}FeO₃ [BLPFO] {co-doping of La/Pb} in BiFeO₃ by solid state reaction route, and report the structural, dielectric and ferroelectric properties.

Experimental

Materials

The high purity (99.5%, Loba) bismuth oxide (Bi₂O₃), iron oxide (Fe₂O₃), lead oxide (PbO) and lanthanum oxide (La₂O₃) were mixed (stoichiometry) in an agate mortar and pestle to prepare BiFeO₃ [BFO] and Bi_{1-x-y}Pb_yLa_xFeO₃ (x = 0.1; y = 0.175) [BLPFO] ceramics. All the chemicals were GR grade and used without any further purification.

Synthesis method

The polycrystalline samples with the formulation of BiFeO₃ and Bi_{0.725}La_{0.1}Pb_{0.175}FeO₃ were prepared by solidstate reaction route. The dried Bi₂O₃, Fe₂O₃, PbO and La₂O₃ reagents in the desired stoichiometric ratios were wet mixed together. The homogeneous mixed powders were calcined at different temperatures for different duration. BFO powder was calcined in two different steps; (1) 650 °C for one hour and (2) 830 °C for one and half hours with intermediate grinding in between to achieve the desired phase [**11**]. The fine calcined powders were mechanically pressed (8 - 10 tones) to make circular pellets of 15 mm diameter and 2 mm thickness. All the pellets were sintering as performed in Bi₂O₃ atmosphere at 850 °C for six hours for densification.

Characterizations

X-ray diffraction: In order to study phase formation and to carry out preliminary structural analysis of BFO and

BLPFO, X–ray diffraction (XRD) were taken using $CuK_{\alpha l}$ radiation ($\lambda = 1.5406$ Å) of a Bruker D8 Advance X-ray powder diffractometer. The data was collected over the angular range 2θ ($10^{\circ} < 2\theta < 70^{\circ}$) with a scanning rate of 2° per minute with a step size of 0.02° at room temperature.

Dielectric measurements

The dielectric constant (ϵ') and loss tangent (tan δ) were measured using Novocontrol alpha-ANB impedance analyzer in a wide range of frequencies (10 Hz - 1 MHz) at room temperature. For dielectric measurements, sintered pellets were polished with zero grain emery paper, and coated with high purity silver paste on adjacent faces as electrodes and then dried for 2 hrs at 150 °C to make the parallel plate capacitor geometry.

Ferroelectric-polarizations measurement

Ferroelectric-polarizations were measured on silver pasted sintered pellets of BFO and BLPFO ceramics using a ferroelectric loop tracer (Sawyer-Tower circuit).

Results and discussion

Fig. 1 shows the XRD pattern for undoped and La/Pb codoped Bi_{0.725}La_{0.1}Pb_{0.175} FeO₃ ceramics. All the diffraction peaks of parent BFO were indexed in the rhombohedral crystal system (space group R3c) with a very small amount of non-perovskite Bi₂Fe₄O₉ impurity phase (marked by * in Fig. 1) [JCPDS Card No. 74-1098]. The reflections of the XRD pattern obtained for the Bi_{0.725} Pb_{0.175}La_{0.1}FeO₃ ceramics were indexed in the pseudocubic (Pm-3m)symmetry. From the inset of the Fig. 1, the XRD data showed that the doubly splitted (110) and (104) peaks converted into a single (110) peak. Comparison of XRD of BFO and BLPFO indicate a structural transformation with a continual change of structural parameters in the samples with very small rhombohedral distortion that is to say, the solid solution of the La/Pb doped BFO changes the crystal symmetry from rhombohedral to pseudocubic symmetry.

Fig. 1. X-ray diffraction pattern for $BiFeO_3$ [BFO] and $Bi_{0.725}La_{0.1}Pb_{0.175}FeO_3$ [BLPFO] ceramics.

Fig. 2. Rietveld refinement XRD pattern for $BiFeO_3$ and $Bi_{0.725}La_{0.1}Pb_{0.175}FeO_3$ ceramics.

In order to further confirm the structural transition the diffraction pattern were Rietveld refined through Fullprof 2000 program [12]. The profile fits for the Rietveld refinement of BFO and BLPFO samples are illustrated in Fig. 2. The XRD pattern of parent BFO were refined with rhombohedral (R3c space group) structure with lattice parameters $a = b \sim 5.5798$ Å and $c \sim 13.867$ Å. whereas, the refined XRD pattern of BLPFO samples was carried out with pseudocubic (*Pm*-3*m*; a = 3.9491 Å) symmetry. The obtained lattice parameter matches well with the earlier reported data [10]. The calculated parameters of parent as well as doped sample after refinement are listed in Table 1. It is noticed that the observed and calculated pattern are in good agreement. The crystal symmetry of both compounds developed by FpStudio Ver-2.0 program is shown in **Fig. 3**.

Table 1. Rietveld refined structural parameters for $BiFeO_3$ and $Bi_{0.725}La_{0.1}Pb_{0.175}FeO_3$ ceramics.

Structure	Cell parameters	Atoms	x	у	z	R-factors(%)
BiFeO ₃						
R3c	a = 5.5798 Å	Bi	0.0000	0.0000	0.0000	$R_{\rm p} = 10.2$
	b = 5.5798 Å	Fe	0.0000	0.0000	0.2163	$R'_{wp} = 14.6$
	c = 13.860 Å	0	0.5638	0.0197	0.9475	$R_{exp} = 7.51$
	V = 373.81 Å ³					$\chi^2 = 3.76$
Bi _{0.725} La _{0.1} Pb _{0.175} FeO ₃						
Pm-3m	a = 3.9491 Å	Bi/La/Pb	0.0000	0.0000	0.0000	$R_{\rm p} = 7.05$
	b = 3.9491 Å	Fe	0.5000	0.5000	0.5000	$R'_{wp} = 9.15$
	c = 3.9491 Å	0	0.0000	0.5000	0.5000	$R_{exp} = 3.95$
	$V = 61.59 \text{ Å}^3$					$\chi^2 = 4.77$

Fig. 3. Representation shows the room temperature rhombohedral (R3c) structure for BiFeO₃ (a) and pseudocubic (Pm-3m) for La/Pb doped BiFeO₃ (b).

ADVANCED MATERIALS Letters

Fig. 4 shows the frequency dependent dielectric constant (ϵ') and loss tangent (tan δ) of BFO and BLPFO ceramics at room temperature. For higher frequencies, both ε' and tan δ are independent of frequencies. However, both ceramics exhibited frequency dispersion at lower frequencies. The room temperature values of ε' at 100 kHz are about 71 and 134 for BFO and BLPFO, respectively. The value of dielectric constant, in this particular frequency range, of BFO and BLPFO is comparable or better than some of the BiFeO₃ based systems [14-16]. We comment that the room temperature dielectric frequency response infers dispersive characteristics at low frequencies in both BFO and BLPFO, attributed to the presence of oxygen vacancies as well as presence of Fe³⁺ and Fe²⁺ ions on octahedral sites. Usually, the dispersive dielectric permittivity and dielectric loss are concerned with ac conductivity. The presence of Fe^{3+} and Fe^{2+} ions on octahedral sites favors the conduction via the hopping of charge carriers. The dispersive low frequency dielectric response infers an enhancement of hopping of carriers resulting an increase in the conduction process thereby reducing the resistivity consistent with known dielectric relaxation in solids [13]. BLPFO as compare to BFO ceramics discern more dispersion in dielectric constant as well as loss tangent along with their higher values of dielectric constant leading to space charge polarization in multiferroic materials.

Fig. 4. Variation of ϵ' and tanb of the BiFeO₃ and Bi_{0.725}La_{0.1}Pb_{0.175}FeO₃ as a function of frequency.

The ferroelectric hysteresis loops of BFO and BLPFO at room temperature are shown in **Fig. 5**. Here, it should be mentioned that these values are obtained with different electric fields of 200 [BFO], and 15 [BLPFO] kV/cm, respectively. For the BLPFO, the low resistivity (high dielectric constant and high dielectric loss tangent) makes the ferroelectric measurement difficult.

For parent BFO, the spontaneous polarization mainly comes from the hybridization between $6s^2$ lone electron pair and the 6p empty orbital of Bi³⁺ ions, which induce the non-centrosymmetric distortion of the electron cloud and result in the ferroelectricity [17]. Under a maximum applied field 160 kV/cm, the remnant polarization $(2P_r)$ of

the BFO was found to be 18.4 μ C/cm². Actually for BLPFO, if measured with comparable electric field of BFO, the 2P_r value will be very small, inferring a structural phase transition from rhombohedral to pseudocubic symmetry. We note that BLPFO documents the maximum value of remnant polarization $\approx 0.24 \ \mu$ C/cm² at electric field value of 15 kV/cm. We thus comment that 10% La and 17.5% Pb substitution in BiFeO₃ retains the ferroelectric phase at room temperature consistent with earlier report [10].

Fig. 5. Room temperature ferroelectric hysteresis loops for BiFeO₃ (a) and Bi_{0.725}La_{0.1}Pb_{0.175}FeO₃ (b).

Conclusion

In summary, we have investigated the structural and ferroelectric properties of BiFeO₃ [BFO] and co-doped $Bi_{1-x-y}Pb_{y}La_{x}FeO_{3}$ (x = 0.1; y = 0.175) [BLPFO] polycrystalline ceramic samples. Rietveld refined X-ray diffraction pattern confirms the formation of single phase and reveal the rhombohedral (space group R3c) structure for BFO and pseudocubic symmetry (Pm-3m) for BLPFO phase transition compounds. structural А from rhombohedral [BFO] to pseudocubic symmetry [BLPFO] is obtained. The room temperature dielectric measurements reveal that for higher frequencies, both ϵ' and tan δ is independent of frequencies as well both ceramics exhibited frequency dispersion at lower frequencies. The room temperature values of ε' at 100 KHz are about 71 for BFO and 134 for BLPFO, respectively. The dispersive low frequency dielectric response infers an enhancement of hopping of carriers resulting an increase in the conduction process. Ferroelectric polarization hysteresis loop reveals smaller 2Pr value of BLPFFO as compared to BFO indicating a structural phase transition from rhombohedral to pseudocubic symmetry. With co-doping of La and Pb at

Bi site, the ferroelectricity is suppressed as compared to BFO.

Acknowledgements

The authors are thankful to UGC-DAE CSR, Indore for measurements facilities. As well as wish to acknowledge UGC, New Delhi for financial support.

Reference

- Fiebig M., J. Phys. D: Appl. Phys., 2005, 38, R123. DOI: <u>10.1088/0022-3727/38/8/R01</u>
- 2. Hill N. A., *J. Phys. Chem.* B 2000, 104, 6694–709. DOI: <u>10.1021/jp000114x</u>
- 3. Das S. R. *et al.*, *J. Appl. Phys.* 2007, 101, 034104. **DOI:** <u>10.1063/1.2432869</u>
- 4. Jun Y.-K. *et al.*, *Solid State Commun*. 2005, 135, 133. DOI: <u>10.1016/j.ssc.2005.03.038</u>
- Zhang S.-T. et al., Appl. Phys. Lett. 2006, 88, 162901. DOI: <u>10.1063/1.2195927</u>
- Yuan G. L., Or S. W., Liu J. M. and Liu Z. G., *Appl. Phys. Lett.* 2006, 89, 052905.
 DOI: 10.1063/1.2266992
- Li J., Duan Y., He H., Song D., J. Alloys Compd. 2001, 315, 259–264.
 DOI: S0925-8388(00)01313-X
- Pandit P., Satapathy S., Gupta P. K., Sathe V. G., J. Appl. Phys. 2009, 106, 114105.
- DOI: <u>10.1063/1.3264836</u>
 9. Chaigneau J., Haumont R., Kiat J. M., *Phys. Rev.* B 2009, 80, 184107.
 DOI: <u>10.1103/PhysRevB.80.184107</u>
- Ge J. J. et al., J. Magn. Magn. Mater. 2012, 324, 200–204. DOI: 10.1016/j.jmmm.2011.08.010
- Palkar V. R. *et al.*, *Phys. Rev.* B 2004, 69, 212102.
 DOI: 10.1103/PhysRevB.69.212102
- 12. Rodríguez-Carvajal J., *Physica* B 1993, 192, 55. **DOI:** <u>10.1016/0921-4526(93)90108-I</u>
- Jonscher A. K., *Nature* 1977, 267, 673.
 DOI: <u>10.1038/267673a0</u>
- Wang D. H., Goh W. C., Ning M., Ong C. K., *Appl. Phys. Lett.* 2006, 88, 212907.
 DOI: <u>10.1063/1.2208266</u>
- Li J. -B., Rao G. H., Liang J. K., Liu Y. H., Luo J., Chen J. R., *Appl. Phys. Lett.* 2007, 90, 162513.
 DOI: 10.1063/1.2720349
- Layek S. and Verma H. C., Adv. Mat. Lett. 2012, 3, 533-538.
 DOI: 10.5185/amlett.2012.icnano.242
- 17. Yuan S. *et al.*, *Acta Phys. Sin.* 2009, 200, 193. DOI: <u>10.7498/aps.61.234102</u>

Advanced Materials Letters

Publish your article in this journal

ADVANCED MATERIALS Letters is an international journal published quarterly. The journal is intended to provide top-quality peer-reviewed research papers in the fascinating field of materials science particularly in the area of structure, synthesis and processing, characterization, advanced-state properties, and applications of materials. All articles are indexed on various databases including DQAJ and are available for download for free. The manuscript management system is completely electronic and has fast and fair peer-review process. The journal includes review articles, research articles, notes, letter to editor and short communications.

