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ABSTRACT 

Elongated Au nanoparticles (NPs) embedded in silica matrix were fabricated by 100 MeV Ag ion irradiation of 3 MeV Au ion 
implanted SiO2/Si(100) substrates, annealed at 1050

o
C. Electron-beam-induced shape evolution of elongated Au NPs embedded 

in SiO2 has been studied by high resolution transmission electron microscopy. Electron beam irradiation resulted in a decrease 
in the aspect ratio of Au NPs from ~ 1.4 to 1 with increase in irradiation time. The observed ellipsoidal-to-spherical shape 
transition of Au NPs has been ascribed mainly to the cumulative effects of electron beam induced heating, softening of silica 
matrix and radiation enhanced diffusion of knock-on displaced O and Si atoms, resulting in local stress relaxation. Copyright © 
2013 VBRI press.  
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Introduction  

Metal nanostructures embedded in dielectric matrix exhibit 
unique physical and chemical properties, widely different 
from that of bulk. The size and shape dependent properties 
of metal nanostructures make them promising for a wide 
range of applications in nanoelectronics, photonics, 

telecommunications and bio-medical engineering [1-7]. 
Several physical and chemical methods have been 
employed for the synthesis of metal nanostructures 

embedded in various dielectric matrices [8-14]. For their 
applications in nanotechnology, it is very important to 
controllably tailor the size and shape of metal 
nanostructures. Irradiation with energetic ion beams has 
emerged a unique tool to tailor the shape and size 

distribution of embedded metal nanoparticles (NPs) [15-

20]. Recent studies have shown that electron beam 
irradiation can also be used for tailoring the size 

distribution of metal NPs in nanocomposites [21-26]. The 
effects of electron beam irradiation on the shape and size 
distribution of embedded NPs is of interest since during 
TEM measurements the nanocomposites are exposed to 

energetic electrons. In a recent study [26], we have shown 
that 200 keV electron beam irradiation of Au-silica 
nanocomposites leads to controlled growth of Au NPs. 
However, electron beam irradiation induced shape change 
of Au NPs have not been reported so far to the best of our 
knowledge. Electron beam irradiation can cause quasi-
melting of small nanoclusters and also result in relaxation 
of strain in embedded nanostructures leading to their shape 
change. In this letter, we report an in-situ TEM 
investigation of electron-beam-induced shape evolution of 
elongated Au NPs embedded in SiO2 and analyze the 
mechanisms underlying the shape change. We demonstrate 
that electron beam irradiation can be used as an effective 
tool to tailor the shape of Au NPs embedded in SiO2.  
 

 
 

Fig. 1. (a) Cross sectional TEM image of the as-annealed sample. (b) size 
distribution of Au NPs embedded in SiO2 film. 

 

Experimental 

Amorphous SiO2 thin films with thickness ~950 nm were 
grown on Si(100) substrates by wet thermal oxidation. 
Nanometer-sized Au particles (average size 2 nm) 
embedded in SiO2 were synthesized by 3 MeV Au

3+
 ion 

implantation to a fluence of 6 x 10
15

 ions cm
-2

 followed by 
annealing in air at 1050

o
C. Annealed samples were then 

irradiated with 100 MeV Ag ions to a fluence of 1 x 10
14

 

ions cm
-2

 using 15UD Pelletron accelerator facility at 
IUAC, New Delhi. The microstructure of the annealed and 
irradiated sample was studied by cross sectional TEM at 
200 keV using JEOL 2010 UHR TEM facility at Institute 
of Physics, Bhubaneswar. In-situ TEM experiments were 
carried out at 200 keV for investigating the electron-beam-
induced shape evolution of Au NPs embedded in SiO2 film 
in the irradiated sample. HRTEM studies on Au NPs 
embedded in SiO2 were carried out for studying the crystal 
structure, shape and size of Au NPs. HRTEM images of Au 
NPs were recorded after every 5 minutes of electron beam 
irradiation, at the same spot. 
 

  

Fig. 2. (a) Cross sectional TEM image of the irradiated sample. (b) 
HRTEM image of one elongated Au NP embedded in SiO2 film. 

Results and discussion 

Fig. 1 (a) shows bright field cross sectional TEM image of 
the annealed sample before irradiation, which reveals the 
presence of spherical Au NPs in embedded in SiO2 layer. 
The size distribution of these Au NPs in the SiO2 layer is 

shown in Fig. 1(b). The average size of these Au NPs has 

been found to be ~ 3.2 ± 0.8 nm. In Fig. 2(a) we show the 
bright field cross sectional TEM image of the annealed 
sample, irradiated with 100 MeV Ag ions to a fluence of 1 
x 10

14
 ions cm

-2
. The presence of spherical Au NPs with 

average size ~ 2 nm together with elongated Au NPs of 
larger size can be clearly seen. The elongation of Au NPs 
has been found to be along the ion beam direction. The 
HRTEM image of one such elongated Au NP is shown as 

inset in Fig. 2(b). The major axis length is 5.5 nm while the 
minor axis length is 4 nm. The average aspect ratio (ratio of 
major-to-minor axis length) of elongated Au NPs has been 
found to be ~ 1.4. The passage of 100 MeV Ag ions 
through SiO2 film containing Au NPs deposits electronic 
energy (Se) of ~11.1 keV/nm, estimated using stopping 

range of ions in matter (SRIM) program [27]. This results 
in the formation of latent tracks of diameter ~ 8 nm in the 

SiO2 film [28]. Each individual ion impact leads to the 
formation of thermal spike of duration ~ 10

-12 
s which 

results in transient melting and viscous flow of silica [29]. 
Elongation of Au NPs embedded in silica matrix upon swift 

heavy ion irradiation has been reported [17-20] and 

explained in different ways.
 

Roorda et al. [16] have 
explained the deformation of Au NPs along ion beam 
direction in ion irradiated Au-silica core-shell 
nanostructures as a consequence of in-plane mechanical 
stress on silica shell acting perpendicular to the ion beam 

[30]. This pressure exerted by silica shell on the radiation 
softened Au core results in spherical-to-oblate shape 
transformation of Au NPs along ion beam direction. The 
second explanation is based on the fact that volume 



 

Mohapatra et al. 

Adv. Mat. Lett. 2013, 4(6), 444-448                                             Copyright © 2013 VBRI press                                   446 
 

expansion of Au while transforming from solid to molten 
state is more than that of silica undergoing similar 

transformation [20]. This leads to elongation of Au NPs 
along ion track in which small Au NPs and silica both exist 
in transiently molten state during thermal spike.  

  

Fig. 3. HRTEM micrographs (a)-(d) showing a typical shape evolution of 
elongated Au NP embedded in SiO2 during 200 keV electron beam 
irradiation. The numbers marked in each micrograph indicate the 
irradiation time in minutes.  

  

Fig. 4. Variation of aspect ratio of Au NP with electron beam irradiation 
time. The aspect ratio of Au NP was found to decrease from about 1.4 to 
1 during electron beam irradiation. 

In Fig. 3, we show the results of an in-situ HRTEM 

study on elongated Au NPs embedded in SiO2. Fig. 3(a-d) 
shows the time dependent HRTEM images revealing the 
shape evolution of one elongated Au NP, when the electron 
beam irradiation time is increased from 0 to 50 minutes. 
The shape change of the elongated Au NP with increase in 
irradiation time can be clearly seen. The variation of aspect 
ratio of Au NP with electron irradiation time is shown in 

Fig. 4. The aspect ratio of the Au NP showed a marked 
decrease from ~ 1.4 to 1 as the irradiation time is increased 
to 50 min. The observed shape recovery of elongated Au 

NP from ellipsoidal-to-spherical shape upon electron beam 
irradiation has an important significance because it offers a 
unique way to tailor down the aspect ratio of embedded 
NPs. The possible mechanisms underlying the observed 
electron-beam-induced shape evolution of elongated Au 
NPs embedded in silica matrix are discussed in the next 
section. 

When an energetic electron beam penetrates a solid, 
electrons undergo elastic scattering with target nuclei and 
inelastic scattering with atomic electrons. The elastic 
collisions of incident electrons with target nuclei result in 
knock-on displacements of target atoms. The inelastic 
scattering of electrons leads to the excitation or ejection of 
atomic electrons. The possible mechanisms of atomic-
electron excitation include ionization of core electrons, 
ionization of valence electrons leading to covalent bond 
breakage, elevation of valence electrons to exciton state 
and collective excitation of valence electrons into plasmons 

[31]. The energy deposited by electrons results in an 
increase in temperature of the irradiated area. The thermal 
energy deposited by electrons results in melting of small 
clusters and diffusion of constituent atoms in the irradiated 
area. This together with the atomic displacements caused 
due to elastic scattering of electrons can result in change in 
the size and shape of nanoparticles in the irradiated area. In 
addition, radiation enhanced atomic diffusion and stress 
relaxation in embedded NPs due to temperature rise of 
matrix can lead to change in their size and shape. 
Therefore, we estimate the temperature rise in the matrix 
and the atomic displacements caused by incident electrons. 

We have theoretically calculated the temperature rise (Te) 
in the SiO2 matrix due to 200 keV electron beam irradiation 

using the formalism given by Liu and Rishbud [21]. The 
total energy loss (Q) of the electrons in the solid results in 

an increase in temperature (Te) of the matrix. The 
temperature rise of SiO2 matrix due to electron beam 
irradiation for time te seconds is given by – 
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where D = kt/cv d  (kt is the thermal conductivity, cv is 
specific heat and d is the density), J (=1.4x10

8
 A/m

2
) is the 

current density and Re is the effective radius of the 

irradiated area. The rise in temperature Te) of the SiO2 
matrix as a function of time (te) has been calculated using kt 

= 130 J/m s K, d = 2200 Kg/m
3
, cv = 740 J/Kg K for the 

SiO2 matrix. It has been observed that the temperature 

Te) increases up to about 140
o
C after electron beam 

irradiation for 50 minutes.  
The maximum energy transferred to a nucleus of mass 

ma by an electron of mass me and kinetic energy E is given 

by [32]- 
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For 200 keV electrons, Emax have been estimated to be 
32.8 eV, 18.7 eV and 2.7 eV for O, Si and Au atoms, 
respectively. The estimated values of Emax for O and Si 
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atoms are higher than the corresponding displacement 
energies for O (9.3 eV) and Si (18.6 eV), reported for 

electron irradiation of SiO2 films [33]. However, Emax for 
Au is much lower than the corresponding displacement 
energy of 25 eV. Therefore, 200 keV electron beam 
irradiation of SiO2 matrix containing Au NPs results in 
knock-on displacements of O and Si atoms, but not that of 
Au atoms.  The knock-on displacements of O and Si atoms 
can result in the relaxation of stress around the elongated 
Au NPs. It must be pointed out here that the cross sections 
for electron induced knock-on displacements of O and Si 
atoms are small. However, electron beam induced radiation 
enhanced diffusion (RED) of knock-on displaced O and Si 
atoms and temperature rise of silica have been shown to 

result in precipitation of Si nanocrystals in silica [34] and 

shape deformation of nanopores in silica [34]. The shape 
deformation of silica nanopores have been explained by 
electron beam induced softening of silica, which acts as a 

viscous fluid [35]. In the present case, elongated Au NPs in 
silica are fabricated by swift heavy ion irradiation and 
hence form during rapid quenching of transiently molten 
viscous fluid along ion track. Due to this they are not in a 
stable configuration because of the presence of interfacial 
stress. 200 keV electron beam irradiation leads to a 
temperature rise (140

o
C) of silica together with radiation 

enhanced diffusion of knocked-on O and Si atoms in silica, 
which acts as a viscous fluid. We believe the cumulative 
effects of electron beam induced heating, softening of silica 
matrix and RED of knock-on displaced O and Si atoms 
result in relaxation of stress around Au NPs driving their 
ellipsoidal-to-spherical shape transition for energy 
minimization. 
 

Conclusion 

In summary, an in-situ HRTEM study of electron-beam-
induced shape evolution of elongated Au NPs embedded in 
SiO2 matrix has been performed. Electron beam irradiation 
results in decrease in aspect ratio of elongated Au NPs, 
which can be controlled by irradiation time. The theoretical 
calculations indicate that the electron-beam irradiation 
leads to temperature rise (140

o
C) of silica matrix and 

knock-on displacements of O and Si atoms. The observed 
ellipsoidal-to-spherical shape transition of Au NPs 
embedded in silica can be ascribed to cumulative effects of 
electron beam induced heating, softening of silica matrix 
and RED of knock-on displaced O and Si atoms resulting in 
local stress relaxation. 
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