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ABSTRACT 

Theoretical calculations of the magnitude and temperature variation of the measured thermal conductivity of undoped and doped 
GaAs nanobeams will present. The calculations have been performed by employing modified Callaway’s theoretical model. In the 
model, both longitudinal and transverse modes are explicitly taken into account. Scattering of phonons is assumed to be by 
nanobeam boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. A 
method is used to calculate the Debye temperature and phonon group velocities for undoped and doped nanobeams from their 
related melting points.  Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are 
investigated. The drop in thermal conductivity of doped nanobeams compared to that of the undoped beams arises from electron-
phonon scattering and additional phonon scattering from a large number of point impurities due to the presence of dopant atoms. 
Effect of Gruneisen parameter, surface roughness, and dislocations are successfully used to correlate the calculated values of 
lattice thermal conductivity to that of the experimentally measured curves. Copyright © 2012 VBRI press.  
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Introduction 

In nanostructure systems, thermal transport had become a 
subject of consideration and much interest in the area of 

research in the last decade [1]. The interest is drawn to a 
new thermal transport phenomenon. That is operative at 
these small length scales and where quantum mechanical 

phenomena [2] become significant and applied different 
than the bulk counterpart. 

Thermal transport in the low-dimensional nano-
structures (such as III-V group materials) is important for 
next-generation microelectronic cooling techniques, novel 
solid-state energy conversion devices, and micro-nanoscale 
sensors. 

Determining the thermal conductivity of nanostructures 
also plays a crucial role in the development of new 
thermoelectric cools, which can potentially impact the 
thermal management of microelectronic devices. The 
efficiency of thermoelectric cools is determined by the 

figure of merit [3], ZT= )/(2

elTS   , with S, , T, 

l , and e  are the Seebeck coefficient, electrical 

conductivity, absolute temperature, lattice thermal 
conductivity, and electronic thermal conductivity, 
respectively. Therefore, low thermal conductivity is 
advantageous to the large ZT value. The improvements in 
the ZT value suggest the possibility of using thermoelectric 
coolers for thermal management of optoelectronic devices. 
So, the search for materials with high electrical and low 
thermal conductivity has increased the interest in nanoscale 
systems for thermoelectric application. 

Fon et al. [4] achieved a direct measurement of thermal 
conductivity in suspended GaAs nanobeams of cross 
sections 100 nm250 nm and 150 nm250 nm,   between  
4 and 40K. They calculated the lattice thermal conductivity 

(LTC) on the basis of Callaway's theory [5]. In theoretical 
procedure of Fon et al., they didn't consider the 
contribution of normal three phonon-phonon scattering 
processes, and neglected also contribution of polarization 
branches of frequency modes. However, Callaway’s model 
considers both the normal and Umklapp forms of three-
phonon interaction processes. 

Barman and Srivastava [6], presented a theoretical 
investigation of the magnitude and temperature variation of 
the measured thermal conductivity of undoped and doped 
GaAs nanobeams of the measured data of Fon et al.. Their 
calculations had been performed by employing Callaway’s 
theoretical model and Srivastava’s rigorous treatment of 
three-phonon interactions, based on an isotropic continuum 
phonon dispersion relation. Barman and Srivastava's 
calculation didn’t draw any firm conclusions about   size 
dependent parameters (such as Gruneisen parameter, group 
velocity, Debye temperatures and surface roughness) of 
LTC of GaAs nanobeams, and their approach for 
calculations of the thermal conductivity is valid for 
relatively thick nanowires only. 

In this work, we report a theoretical calculation of LTC 
of temperature variation and compare the numerical 
calculations with experimental data of Fon et al. Our goals 
are to investigate quantitatively; the effect of size 
dependent parameters of LTC, and investigate that our 

approach (in which basis on the  Asen-Palmer et al. [7]  

approach) is general which valid for thick and thin 
nanobeams(or nanowires). 

The rest of this paper is organized as follows. In 
section two, details of the theoretical background are 
presented. In section three we describe the result of the 
calculations of LTC of GaAs doped and undoped 
nanobeams, and comparing them with that of the 
experimental data, with detailed exposition to the role of 
the physical parameters. Conclusions are reported in the 
last section. 

 

Theory 

Callaway model 

Callaway's phenomenological theory [5] which assumes a 
well-defined total relaxation time for the various phonon 
scattering processes, developed based on the Boltzmann 
transport equation and under the single mode relaxation 
time approximation, which assumes a Debye-like phonon 
spectrum with no anisotropies or particular structures in the 
phonon density of states. 

The regular bulk formula for LTC (details of 

derivation can be found in reference [8] is given by: 
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Bk and   are the Boltzmann and Planck constants 

respectively,  is the phonon angular frequency,   is the 

phonon group velocity, c  is the combined (total) phonon 

relaxation time. D  is the Debye temperature, T is the 

absolute temperature. 

Asen-Palmer et al. [7] modified this model, by treating 
the contribution of longitudinal and    transverse phonons 
explicitly, and taking into account normal three phonon 
processes. Their approach is adopted in the present work. 

The LTC involves two terms 21    , where 1  

and  2  are given by; 

 


T

C

D

dxxGxCT




0

3

1 )()(                        (2)                                        

1

0

2

0

3

2 )(
)()(

)(
)(

)(

)(



































 
T

RN

C
T

N

C

DD

dxxG
xx

x
dxxG

x

x
CT












        (3) 



 

Research Article                           Adv. Mat. Lett. 2012, 3(6), 449-458           ADVANCED MATERIALS Letters 

 Adv. Mat. Lett. 2012, 3(6), 449-458                                   Copyright © 2012 VBRI Press                                           451 
 

where 
111 )()()(   RNc  , which R  is the sum of 

all resistive scattering processes, and N  is the relaxation 

time of normal phonon processes (N-processes). Following 

Callaway in dividing   into two parts; the longitudinal  L   

and the transverse T  phonon branches can be expressed 

as: 
 

TL  2                (4)                                               

21 LLL                  (5)                                               

21 TTT                   (6)                                              

 

The partial conductivity 1L  and  2L   are the usual 

Callaway terms given by: 
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 and similarly, for the transverse phonons; 
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where the superscripts  L  and  T  denoting longitudinal and 

transverse phonons, respectively. 
L

D  and  
T

D  are  Debye 

temperature appropriate for longitudinal and transverse 
phonon branches, respectively, and; 
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where )(TL  is the longitudinal (transverse) acoustic 

phonon group velocities. 
 
Phonon-scattering rates 

The LTC in semiconducting crystals is limited by various 
mechanisms of scattering of acoustic phonons. The 
following phonon scattering processes are considered: 

Phonon-Point defects scattering rates 

The phonon–boundary scattering rate is assumed 
independent of temperature and frequency, for longitudinal 

and transverse modes can be written as [5]: 
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where effL  is the effective phonon mean free path(MFP), 

for  T << D it is of the order of the cross-sectional 

dimensions, which is called Casimir length( CL ). For a 

cylinder with radius R, this length is equal to 2R, while for 
a rectangular cross-section with sides A and B, 

CL =1.12(AB)
0.5

.  

A precise determination of effL  is crucial for correctly 

describing the )(T  curve in the low temperature range. 

In this work, effL is equal to 7.3 mm for the best fit to the 

T
3
 dependence of thermal conductivity at very low 

temperatures of the bulk sample [9]. 
 

Three phonon-phonon umklapp and normal scattering 
processes 
 
For phonon-phonon interactions, we will assume only 
three-phonon processes. This is justified, as the scattering 
rate for four-phonon processes is two to three orders of 

magnitude smaller than that of three phonon processes [10]. 
For longitudinal and transverse phonons, the relaxation 
time in terms of the dimensionless variable x  due to the 

three phonon Umklapp scattering rate is given by the 

formula [11]: 
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where uB  is the Umklapp parameter strength given by:  

                                                                                                          

)(2

)(

2

)()(

TL

DTL

TLTL

U
M

B



  

 
  is the unharmonicity parameter called Gruneisen 

parameter which is the measure of  the crystal 
unharmonicity. In this work,   is used as an adjustable 

parameter, as often used in the literature [6, 12]. For best fit 

it is found that, L =1.85 and T =1.8 for bulk GaAs in 

this work. In the expression above, M   is the average 
atomic mass, b is adjustable fitting parameter, it has been 
reported that the value of b is in the range of 2≤ b≤ 3 for 

crystalline solids [13]. Throughout the method trail and 
error, the value of b is adjusted such that the best fit for 
calculated LTC to the experimental data is obtained, it is 
found to be equal to 2.5 for GaAs in this calculation.  
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The phonon group velocity, , of zincblende GaAs 

structure, Along [100] direction, for the longitudinal and 

transverse mode, are given by [14]: 
 

5.0

11 )/(  CL                       (14) 

                                   
5.0

44 )/(  CT                           (15)    

                                
where   C11 and  C44  are bulk elastic constants at 300K, and 

  is the density.    The bulk longitudinal (
L

D ) and 

transverse (
T

D ) Debye temperature values were used are 

440K and 320K, respectively. The total value of Debye 

temperature ( D ) found by the 

relation
333 )(2)()(3   T

D

L

DD  , is equal to 345K 

[15]. 
Although normal scattering processes (N-processes) is 

not a resistive process, but it has an important influence by 
transferring energy between different modes. The relaxation 

rates of N-processes in the Herring treatment [16] is given 
by: 
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where e  and f are used as adjustable parameters without 

regard to their dependence on the properties of a given 

crystal. In this work, we have considered the cases ( e , f ) 

= (2,3) and ( e , f ) = (1,4) for longitudinal and transverse 

phonons, respectively [12]. Thus, the relaxation rates in 
terms of the dimensionless variable  x   be come as follows 

[16];   
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 and oV  is the volume per atom of the crystal. 

 
Phonon-impurity scattering rate 

Two types of point defects are considered, isotope and 

foreign (impurity) atoms. According to Klemens [17] 
approach, the relaxation rate for point defect scattering is 
given by: 
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where  I   is the point defect strength parameter, which at 

least is the sum of two terms  impiso III   ,where isoI  

being due to the scattering by distribution of isotopes of the 

elements in the compound, and impI  being due to the 

scattering caused by foreign atoms(impurity).  
 
Phonon-isotope scattering rate                  

For longitudinal and transverse modes, the phonon-isotope 
scattering rate in terms of the dimensionless variable  x   

become as [17]:   
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  is the measure of the strength of the mass-difference 
scattering defined as: 
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with 
i

iimcm ,  where im  is the atomic mass of 

the i th
 isotope and  ic  is the fraction atomic natural 

abundance. For a binary compound composed of two 

different elements, A  and B ,     is given as [12]: 
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where AM    is the average atomic mass of  A  , and BM  is 

that of  B . The factor 2 in front of the square brackets is 

due to the fact that  AB  is a binary compound [12]. The 

value of     for GaAs is calculated from the isotope 
compositions of Ga (of 60.1% of 

69
Ga and 39.9% of 

71
Ga) 

and As (100% of most stable 
75

As) and is equal to 
0.925410

-4
. 

 
Lattice thermal conductivity of nanostructure  

The longitudinal and transverse modes of the phonon-
impurity scattering rate in terms of the dimensionless 

variable  x   become as [17]:   
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S is the scattering factor which usually has a value close to 

unity [17], and impN   is the impurity concentration. 

 
Phonon- dislocation scattering rate 

Phonons will scatter on dislocations by two distinctive 
mechanisms. The first mechanism is scattering of phonons 
on the core of the dislocation lines, which is a short-range 
interaction. The second mechanism is scattering of phonons 
by the elastic strain field of dislocation lines, which is a 
long-range interaction. 

The phonon scattering rate at the core of the 

dislocation is given by [18]: 
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where DN  is the density of the dislocation lines of all 

types, and   is the weight factor to account for the mutual 

orientation of the direction of the temperature gradient and 
the dislocation line, the average value found by integration 

is   =0.55 [17]. For longitudinal and transverse mode in 

terms of the dimensionless variable x , Eq. (23) becomes: 
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The phonon scattering rate by the elastic field of 

screw  DS/1 , edge  DE/1  and mixed dislocation 

 DM/1  are given by [17, 18]: 
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where, )/( 121112 CCC   is Poisson's ratio( 11C  and 

12C  are elastic constants). Sb  , Eb and Mb  are 

magnitudes of Burger vectors for the screw, edge, and 

mixed dislocations, respectively, which EsM bbb  . In 

this work it is assumed that the values of these Burger 

vectors are equal; and Sb = Eb = 0.399 nm [19, 20]. The 

total density of dislocation is
M

D

E

D

S

DD NNNN  , 

where 
S

DN ,  
E

DN  and 
M

DN  are the densities for the screw, 

edge and mixed dislocations, respectively. The assumption 
of equally distributed dislocations among the possible types 

is a feasible one [21], so in the present work, 
M

D

E

D

S

D NNN   would be assumed.  

Assuming that phonon relaxation on dislocations is an 
independent process, the combined phonon relaxation can 

be written as  jjD  /1/1 , where j  represents 

scattering times on the dislocation core, on the elastic strain 
field of screw, edge and mixed dislocations.   

By substitution of the parameters for the scattering 
rates of screw, edge and mixed dislocations, longitudinal 
and transverse mode of the combined relaxation rate in 
terms of the dimensionless variable  x   become:  

 

  x
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Nx B
TLD
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

2

)(

201)( 10*6.0)(  
     (28) 

              
Phonon-electron scattering rate 

Acoustic phonon scattering rates on electrons of 
longitudinal and transverse mode in terms of the 

dimensionless variable x , are given by [8]: 

 

  



















Tk

m

Tk

mxEn
x

B

TL

B

TL

TL

eTL

eph
2

exp
2

)(

2

)(

2

)(

2

)(

2
1)(








(29) 

 

where,  en   is the concentration of conduction electrons, 

E  is the deformation potential,  is the mass density, 

m  is the effective mass of the electron. E =8.6 eV 

and
m =0.067 em , where em  is the electron rest mass [6]. 

Assuming that, the phonon confinement does not strongly 

affect phonon-electron scattering rates [8]. Finally the total 
combined relaxation rate is: 
 

     1)(1)( 


TL

s

s

TL

C               (30)   

                           

where, 
)(TL

s  represent the scattering times on the 

Umklapp and normal processes, impurity, boundary, core 
dislocation, elastic field (screw, edge, and mixed), and 
phonon-electron. 
 
Lattice thermal conductivity of nanostructure 

Theoretical and experimental investigation demonstrates a 
size-dependent behavior of lattice vibration of 

nanostructures [22]. The high surface-to-volume ratio of 
semiconductor nanostructures can dramatically alter the 
fundamental properties with respect to the corresponding 
bulk samples. Size can be therefore considered a key 
parameter, controlling the material properties as well as 
subsequent performance of the device. 

Balandin and Wang [2] have demonstrated that acoustic 
phonon dispersion relations in nanostructures can be 
modified from the bulk due to the phonon confinement 
effect. The phonon confinement (which causes to reduce 
phonon group velocity), however, can lead to considerable 

reduction of LTC in nanostructures [1, 2].  
The size dependent parameters should be carefully 

accounted for. These parameters are;  , D ,   (surface 
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roughness),   and lattice dislocations density(
DN ). 

Following references [23, 24], assuming the system to be 

isotropic, the relation between group velocity ( ) and 

Debye temperature ( D ) for nanostructure with that of 

bulk is given as: 
 

               
B

D

n

D

B

n








                           (31)    

                                      

where the superscript n   and B   are refer to nanostructure 

and bulk ,respectively. 
The Debye temperature can be obtained from 

Lindemann's relation of melting criterion [25], and the 

modern form of this relation for D  is given by [26, 27]: 
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where M is the molar mass. Adopting the same relation for 
nanostructures, the following relation can be introduced:   
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where 
n

mT  is the melting point of the nanostructure. The 

melting point of the nanostructure is depends on the 
dimensions (size dependent) and can be calculated from the 

relation [26, 28]: 
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where  or   is a critical radius at which almost all atoms of 

a crystal are located on its surface of bulk , nr  is a radius of 

nanobeams. The parameter or  depends on the structure 

dimension d , the relation between or and d  is [28]: 

 

         dcro  3        (35)     

                                 

where c = 0 ,1 ,and 2 for a nanoparticles, 

nanowire(nanobeams), and thin films, respectively [28,29]. 

d is atomic/molecular diameter and its value is  equal to 

0.245 nanometer for GaAs [30]. mS  and R  are the bulk 

overall melting entropy and ideal gas constant, respectively. 

mmm THS /  , where mH  is enthalpy of formation. 

Employing the data given in Table 1, values for
n

mT , 
n

D , 

and 
n  are calculated through the use of equations (31) to 

(35), and the results are summarized in table 2, in which 
their values decreases as the diameter of nanostructure 

decrease [1,2].  These values will be used in the rest of the 
present calculations. 

The boundary scattering for nanostructures is modified 
as follow; LTC at very low temperatures, depends linearly 
on the sample dimension when the scattering is strictly 

diffuse [31]. The effective phonon MFP would be modified 

as [32]: 
 

                                 
lLL Ceff

111
                     (36)                     

 
Table 1. Material parameters of GaAs. 

 
Assuming partial specular reflection of phonons, the 

relaxation rates of boundary scattering (Eq. 12) for 

longitudinal and transverse modes can be rewritten as [32]:  
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  is specularity parameter,  which represents the 

probability that the phonon is undergoing a specular 

scattering event  at the interface [8]. The value of 1-  

represents the probability that the phonon is undergoing a 

diffuse scattering event.   is between  0 and 1 , with  

 =0  representing a purely rough surface and   =1 

representing a purely smooth surface, and l  is the length of 

the samples. For the present GaAs nanobeam samples, l  is 

equal to 6 micrometers [4]. In this work, to achieve the best 
fit of calculated LTC to that of the experimental data just 

below maximum value of the conductivity,    will be 

treated as an adjustable parameter. 
 
 

Lattice constant 
(nm) 

a 0.56533            [33] 

Volume per atom 
(m

3
) 

Vo 22.6*10
-30             

[34] 

Average atomic 
mass (kg) 

M 120*10
-27              

[33] 

Density  (kg/m
3
) ρ 5317               [35] 

Elastic constants 
(GPa) 
 
 

C11 118.8               [36] 

C12 53.8                 [36] 

C44 59.4                 [36] 

Melting point (K) Tm 1511                 [37] 

Enthalpy (KJ/mol) mH  120                  [38] 
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Results and discussion 

For purposes of comparison, and to point out the 
importance of N-processes, the response of bulk phonons 
will be presented first. The result of calculations for 
temperature dependence of LTC in the temperature range 2 
≤ T≤ 300 K, for bulk Zincblend GaAs samples are 

presented in Fig. 1, using equations (3-30). The material 
parameters of bulk Zincblend GaAs used in the calculations 

are summarized in Table 1. The symbols (circles) are 

experimental data taken from reference [9].  
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Fig. 1. Temperature  variation of  LTC of bulk GaAs. Open circlesare 
data from Ref. [9]. 

 

Table 2. Calculated melting point, Debye temperature, and group velocity 

for undoped and doped nanobeams. Melting point calculated from Eq. 
(34). Debye temperature calculated from Eq. (33), and group velocity 
calculated from Eq. (31) for nanobeams. Bulk group velocity from Eqs. 
(14) and (15). 

 
The solid line is the present theoretical work with the 

effect of N-processes included; the dash-dot-dot line is the 
present theoretical work without N-processes. A 
comparison of these two lines with the experimental data 
indicates the importance of the N- processes. The present 
result suggests that the Ҡ2 term (N-processes) is important 
and cannot be neglected in spite of its small value 
compared to defect and Umklapp scattering. 

In the same figure the effect of isotope and impurity 
scattering are disclosed; the dash-dotted line is the present 
theoretical work without both isotope and impurity 

contribution, while the dashed line is the present theoretical 
work without isotope contribution only. Comparing these 
curves with the experimental data indicates the importance 
of these mechanisms especially in the mid-temperature 

range around the peak in the conductivity curve [17, 39]. 

Fig. 2 displays a comparison of the experimental data taken 

from references [4,9] with the present theoretical 
calculation (solid lines) in the temperature range 2–300 K, 
for the temperature variation of the thermal conductivity of 
doped and undoped nanobeams as well as for bulk samples. 
The experimental data for nanobeams are from reference 

[4], and that for the bulk is from reference [9]. 
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Fig. 2. Temperature variation of the thermal conductivity  of bulk GaAs, 
and undoped and doped GaAs nanobeams. Lines  are the present 
theoretical results and symbols are  the experi- mental results from 
reference[9] for bulk and the nanobeams from reference [4]. 
 
     The fitting for all the cases considered is good. This had 

been performed by using the values of D  and  for bulk 

and nanobeams (from Table 2), and the values of 

adjustable parameters, ,  , DN ,and effL  (which 

presented in Table 3) were adjusted such that to obtain the 
best fit. The temperature dependence of the thermal 
conductivity of the nanobeams can be described as follows: 
Boundary effect would control the phonon scattering at 
very low temperatures, in which depend on the size and 

surface quality [8, 40]. In our calculations, by using the 

Casimir limit ( CL ) [31] equal to the size of the nanobeams 

(see Table 3), and specularity parameter ( ) was used to 

model the surface roughness, they are combined through 
the use of Eq. (37). Good fit to the experimental data of 

reference [4] was achieved. Values of   given in Table 3, 

indicate that each phonon is specularly reflected on an 

average of (1/1- ) ≈ 3 and 2 times for undoped and doped 

beams respectively, before being diffusely scattered. Thus, 
the increased rate of diffuse boundary scattering, i.e. the 
size effect, is actually responsible for the shift in the 
conductivity peak towards a higher temperature and in the 
reduction of the magnitude of thermal conductivity of the 

nanobeam compared to that of the bulk GaAs crystal [6]. 

T  
(m/sec) 

L  
(m/sec) 

T

D  
(K) 

L

D  
(K) 

Melting 

point 

(K) 

 

Crystal 

3340 4730 320 440 1511 Bulk 

3297.2 4669.1 315.9 434.34 1477 
Doped 
nanobeam 

3287.4 4655.8 314.9 433.1 1467 
Undoped 
nanobeam 
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The increased level of impurity centers in the doped 

nanobeam, apparently leads to a value of   smaller than 

that of the undoped nanobeam (see Table 3), this effect can 

be explain as follows:  According to Ziman [40],   is 

related to phonon wave vector k


, and asperity 

parameter, P , by  ])cos2exp[()( 2 Pkk


 . 

Where P is the root mean square height deviation in the 

surface and   is the angle of phonon incident. The larger 

value of   corresponds to the smaller roughness( 

smaller P ), i.e. the smoother surface, thus the more 
probability of specular scattering, vice versa, the smaller 

  corresponds to the more probability of diffusive 

scattering. Thus, the smaller value of   for the doped 

beam corresponds to a higher value of P , which can arise 
from the presence of different atoms on the surface of the 
doped beam. These results are related to the phonon mean 
free path in various conditions, which suggests that dense 
surface features may enhance surface scattering thereby 

hindering phonon transport and decreasing LTC [41]. 
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Fig. 3. Calculated  LTC of undoped and doped beams. Dashed and dash-
dotted lines are without  dislocations for  undoped and doped beams, 
respectively. 

 
Presence of impurity in addition to electron-phonon 

scattering will be responsible for decreasing lattice thermal 
conductivity of doped nanobeam compare to that of 

undoped [4]. The point defect scattering rate increases 
approximately 10 times compared to that for the undoped 

beam, due to the presence of dopant atoms in the doped 

beams [6]. The concentration of electron is found to be 
equal to 1.510

21
 m

-3
, because the doped beams are not 

uniformly doped, as only the topmost 50 nm layer is doped, 
the scattering of electrons with phonons would be effective 
only at very low temperatures.  

The role of isotope scattering was tested in undoped 
beam. It can be shown that there is only 8% contribution to 
the lattice thermal conductivity from 10K and above, unlike 
the bulk in which there is a contribution of about 57% 
around maximum conductivity, because the boundary 
scattering in nanobeams has a very strong influence on 
thermal conductivity up to about a temperature of 100 K 

[6]. This means that, lattice thermal conductivity of 
nanobeams is limited by imperfections (dislocation and 
impurity) as well as phonon-phonon processes at 
intermediate and high temperature. 
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Fig. 4. Theoretical  calculation  of  LTC  as  a  function of dislocation line 
density for doped GaAs nanobeam at 300K. 

 

The density of dislocation lines ( DN ), have significant 

role in limiting LTC of nanostructures [42]. This is evident 

from Fig. 3 in which recalculations of LTC are performed 
without the effect of dislocation line density for both doped 
and undoped nanobeams. In both cases, inclusion of 
dislocations in the calculations (the solid lines), results in a 
better fit to the experimental data.  Dislocations will 

increase with increasing of impurity [35]. The doped beam 

Table 3. The fitting parameters of GaAs bulk and nanobeams used in calculating LTC, and calculated LTC at 300K. 
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has higher dislocations due to impurities (see Table 

3).There is interaction between the localized impurity 
atoms and the strain field in the vicinity of the dislocations. 

Fig. 4 shows calculated LTC as a function of DN  for 

the doped nanobeam GaAs at room temperature. It is 

obvious from Fig. 4, that LTC is almost independent of 

DN  for low densities (below 10
14

 m
-2

), but it becomes 

strongly dependent on DN  for higher densities. For DN  < 

10
14

 m
-2

 LTC does not depend on DN  which means that it 

is determined by intrinsic properties, e.g., phonon-phonon, 

and point defect scattering [21]. This result is in a good 
agreement with those reported previously for GaN films 

[21, 43]. 
At room temperature, which the phonon-phonon 

scattering has significant role in limiting thermal 

conductivity [11], the Gruneisen parameter ( ) which is a 

measure of the crystal unharmonicity, seems to be increase 

as the cross section of the beams decrease (see Table 3). 
Due to the lack of the data of smaller diameter, this change 
may be in doubt. Nevertheless, the increase of Gruneisen 
parameter as the diameter decrease in terms of change of 
Young's modulus can be explain as follows: when a crystal 
size reduces to a nanoscale range, the surface to bulk ratio 
will begin to dominate the mechanical properties of the 
material. The Young's modulus of single crystal material 
reflects physics of interatomic bond energy and lattice 
structure. Gruneisen parameter has a positive correlation 

with the bulk and Young's modulus [44], so an increase in 
bulk and Young's modulus (as the cross section of 
nanostructures decrease) is expected to reflect itself an 

increase in Gruneisen parameter. Recently, Wang et al. [45] 
were used in situ transmission electron microscopy 
nanocompression technique and finite element analysis to 
investigate the mechanical behavior of GaAs nanowires. 
They inferred that, the Young’s modulus of GaAs 
nanowires will increase as the diameter decrease. This 

result is agree with that observed in [111] Silicon 

nanowires [42] and ZnO nanowires [46]. 

Barman and Srivastava [6] was used the same value 
of   (=1.8), for bulk and nanobeams, this will be in 

contrast to the results of the present work and that of Wang 

et al. [45]. Mechanical properties of nanostructures are 

different from that of the bulk counterparts [45-48]. So, 
variation of the parameters of the nanostructure materials 
should be carefully taking into account. 

 

Conclusion 

Theoretical calculations of LTC for suspended GaAs 
nanobeams of cross sections 100   250 and 150   250 nm 
are reported. Reduction of the LTC of the beams is due to 
large boundary scattering effect and phonon confinement, 
in which the former causes to increase thermal resistance, 
and the latter causes to reduce phonon group velocities. 
The phonon scattering on electrons and impurity in doped 
beam has significant effect in decreasing LTC comparing to 
that of the undoped beam. Results shows that the 
dislocation density have significant role, which is in a good 
agreement qualitatively with the other work in the 

literature. The lattice thermal conductivity would be limited 
by intrinsic properties and dislocation density at high 
temperatures, and does not depend on dislocation at density 
less than 10

14
 m

-2
. Result of the values of adjustable 

parameters DN  ,   , effL , and   in the correlation 

between theoretical and experimental curves of LTC of 
nanobeams indicate the significance of size dependent 
parameters. 
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