www.vbripress.com, www.amlett.com, DOI: <u>10.5185/amlett.2012.4339</u>

Superconducting state parameters of binary

Aditya M. Vora*

metallic glasses

Humanities and Social Science Department, S. T. B. S. College of Diploma Engineering, Shri Swami Atmanand Sarswati Vidya Sankul, Opp. Kapodra Police Station, Varachha Road, Surat 395006, Gujarat, India

*Corresponding author. Tel: (+91) 2832-256424; E-mail: voraam@yahoo.com

Received: 14 April 2012, Revised: 28 May 2012, Accepted 29 May 2012

ABSTRACT

Well known Ashcroft's empty core (EMC) model potential is used to study the theoretical investigation of the superconducting state parameters (SSP) viz. electron-phonon coupling strength, Coulomb pseudopotential, transition temperature, isotope effect exponent and effective interaction strength of some binary metallic glasses. More advanced screening function due to Farid *et al.* (F) has been employed to include the exchange and correlation effect on the aforesaid properties. The present results are found in qualitative agreement with other such earlier reported data available in the literature, which confirm the superconducting phase in the binary metallic glasses. Copyright © 2012 VBRI Press.

Keywords: Pseudopotential; superconducting state parameters; binary metallic glasses; local field correction function.

A. M. Vora obtained his Ph. D. in Physics from Sardar Patel University, Vidhyanagar, Anand, Gujarat, India in 2004. Presently, he is working as a I/C Head of Humanities and Social Science Department at STBS College of Diploma Engineering, Surat, India since 2008. His trust area of working is Experimental Condensed Matter as well as Theoretical Condensed Matter and Computational Physics. He involves with in the field of studying physical properties like thermodynamical, structural, transport, surface, magnetic, vibrational properties of

liquid metals as well as their alloys and non-crystalline materials using pseudopotential approach.

Introduction

During last several years, the superconductivity remains a dynamic area of research in condensed matter physics with continual discoveries of novel materials and with an increasing demand for novel devices for sophisticated technological applications. A large number of metals and amorphous alloys are superconductors, with critical temperature T_C ranging from 1-18K. The pseudopotential theory has been used successfully in explaining the superconducting state parameters (SSP) for metallic complexes by many workers [1-23]. Many of them have used well known model pseudopotential in the calculation of the superconducting state parameters for the metallic complexes [4-22]. Out of very large numbers of metallic glasses, the SSP of only few metallic glasses are reported based on the pseudopotential, so far. Recently, we have studied the superconducting state parameters of some metallic superconductors using single parametric model

potential formalism [4-15]. The study of the superconducting state parameters of the metallic superconductors such as metals, alloys and metallic glasses may be of great help in deciding their applications; the study of the dependence of the transition temperature T_c on the composition of metallic elements is helpful in finding new superconductors with high T_c . The application of pseudopotential to binary metallic superconductors involves the assumption of pseudoions with average properties, which are assumed to replace three types of ions in the binary systems, and a gas of free electrons is assumed to permeate through them. The electronpseudoion is accounted for by the pseudopotential and the electron-electron interaction is involved through a dielectric screening function. For successful prediction of the superconducting properties of the alloying systems, the proper selection of the pseudopotential and screening function is very essential [4-15].

Therefore, in the present article, we have used well known McMillan's theory [23] of the superconductivity for predicting the superconducting state parameters viz. the electron-phonon coupling strength λ, Coulomb pseudopotential μ^* transition temperature T_c , isotope effect exponent α and effective interaction strength N_oV of some binary metallic glasses based on the superconducting (S), conditional superconducting (S') and non-superconducting (NS) elements of the periodic table using model potential formalism. To see the impact of various exchange and correlation function on the aforesaid properties, we have employed for the first time more advanced local field correction function proposed by Farid et al. (F) [24] with Ashcroft's empty core (EMC) model potential [25] in the present computation.

In most of the theoretical studies of superconductivity of bulk metallic complexes, the Vegard's law was used to calculate electron-ion interaction from the potential of the pure components. Also in bulk metallic glasses, the translational symmetry is broken, and therefore, the momentum (or quasi-momentum) should not be used to describe the state of the system. The virtual crystal approximation enables us to keep the concept of the momentum only in an approximate way. But, it is well established that pseudo-alloy-atom (PAA) is more meaningful approach to explain such kind of interactions in binary systems [4-15]. In the PAA approach a hypothetical monoatomic crystal is supposed to be composed of pseudo-alloy-atoms, which occupy the lattice sites and from a perfect lattice in the same way as pure metals. In this model the hypothetical crystal made up of PAA is supposed to have the same properties as the actual disordered alloy material and the pseudopotential theory is then applied to studying various properties of alloy systems. The complete miscibility in the glassy alloy systems is considered as a rare case. Therefore, in such binary systems the atomic matrix elements in the pure states are affected by the characteristics of alloys such as lattice distortion effects and charging effects. In the PAA model, such effects are involved implicitly. In addition to this it also takes into account the self-consistent treatment implicitly [4-15].

The well-known Ashcroft's empty core (EMC) model potential [25] used in the present computations of the SSP of metals is of the form,

$$V(q) = \frac{-8\pi Z}{\Omega_o q^2} \cos(qr_c) \tag{1}$$

here, Z, Ω_o and r_c are the valence, atomic volume and parameter of the model potential of metals, respectively. The Ashcroft's empty core (EMC) model potential is a simple one-parameter model potential, which has been successfully found for various metallic complexes [4-22]. When used with a suitable form of dialectic screening functions, this potential has also been found to yield good results in computing the SSP of metallic elements [4-22]. Here, the model potential parameter r_c is fitted in such a way that the calculated values of the transition temperature T_c agrees well with the theoretical or experimental value of the T_c as close as possible.

Computational methodology

In the present investigation for binary metallic glasses, the electron-phonon coupling strength λ is computed using the relation [4-23]

$$\lambda = \frac{m_b \Omega_0}{4\pi^2 k_F M \langle \omega^2 \rangle} \int_0^{2k_F} q^3 |V(q)|^2 dq$$
 (2)

here m_b is the band mass, M the ionic mass, Ω_o the atomic volume, k_F the Fermi wave vector, V(q) the screened pseudopotential and $\langle \omega^2 \rangle$ the averaged square phonon frequency, of the binary glassy alloy, respectively. The effective averaged square phonon frequency $\langle \omega^2 \rangle$ is calculated using the relation given by Butler [26], $\langle \omega^2 \rangle^{1/2} = 0.69 \theta_D$, where θ_D is the Debye temperature of the binary metallic glasses.

Table 1	. Input	parameters	and	other	constants.
---------	---------	------------	-----	-------	------------

Metallic glass	Valence	Potential Parameter	Atomic Volume	Atomic Mass	Debye Temperate
Au ₈₄ Si ₁₆	1.48	0.3688	116.58	169.95	241.80
Mg _{85.5} Cu _{14.5}	1.84	1.6111	132.28	29.99	349.77
Ca ₇₀ Mg ₃₀	2.00	2.2645	252.14	35.35	282.00
Ca ₇₀ Zn ₃₀	2.00	2.2578	261.28	47.67	286.09
Mg70Zn30	2.00	1.6348	133.22	36.63	344.59
Mg ₈₄ Ni ₁₆	2.00	1.5189	128.44	29.81	440.73
Cu ₆₆ Ti ₃₄	2.02	1.8073	92.33	58.23	365.80
Be ₉₀ AI ₁₀	2.10	1.6203	60.09	10.81	1338.80
Cu ₆₀ Zr ₄₀	2.20	1.5006	110.71	74.62	322.20
NI81B19	2.20	1.5103	69.79	49.61	787.60
Be ₇₀ Al ₃₀	2.30	0.4721	/1.4/	14.40	1136.40
	2.30	0.9564	145.50	108.43	225.50
CU ₃₃ Y ₆₇	2.34	1.7099	1/5.41	80.54	317.76
CU55ZI45	2.35	0.9187	114.59	76.00	319.60
Ca ₆₀ Al ₄₀	2.40	2.1125	220.60	34.84	303.77
Cu ₅₀ Zr ₅₀	2.50	1.4564	118.47	77.39	317.00
La ₈₀ Au ₂₀	2.60	1.7892	224.40	150.52	146.60
Cu ₄₅ Zr ₅₅	2.65	1.4320	122.34	78.77	314.40
NI33Y67	2.67	1.6487	173.77	78.94	364.72
NI ₃₁ Dy ₆₉	2.69	0.9774	163.79	130.22	309.54
Cu ₄₃ I 157	2.71	1.5473	101.18	54.63	370.56
	2.80	1.4149	126.22	80.15	311.80
Cu ₃₅ Zr ₆₅	2.95	0.9277	130.10	81.54	309.20
Cu ₆₀ W ₄₀ Fe ₈₀ B ₂₀	3.00	1.4312	90.47	111.67	300.79
	3.00	1.3421	71.04	46.84	457.00
Fe83B17	3.00	1.3451	73.13	48.19	599.00
La ₈₀ Ga ₂₀	3.00	1.6840	228.04	125.08	177.60
Ni50Zr50	3.00	0.7656	115.52	74.96	370.50
Cu ₃₃ Zr ₆₇	3.01	0.9307	131.65	82.09	308.16
Cu57Zr43	3.01	1.5935	160.20	82.09	322.89
Cu ₃₀ Zr ₇₀	3.10	0.9296	133.98	82.92	306.60
Fe ₉₀ Zr ₁₀	3.10	1.3979	86.99	59.39	436.80
Ni ₆₀ Nb ₄₀	3.20	0.6735	92.98	72.38	317.67
Pd ₈₀ Si ₂₀	3.20	0.7099	106.66	70.74	266.00
Cu ₂₅ Zr ₇₅	3.25	0.9355	137.86	84.30	304.00
Ni ₃₆ Zr ₆₄	3.28	0.7696	127.06	74.51	367.32
TI ₉₀ Te ₁₀	3.30	0.8618	195.28	196.69	85.95
Co ₆₇ Zr ₃₃	3.33	1.4376	102.59	69.59	323.11
Zr ₆₇ Ni ₃₃	3.34	1.4848	129.59	80.49	372.53
Fe ₈₀ P ₂₀	3.40	1.3192	80.34	50.87	671.16
In ₈₀ Sb ₂₀	3.40	1.7078	181.04	116.21	128.60
Zr ₇₀ Be ₃₀	3.40	1.7350	126.22	66.56	635.70
Zr ₇₀ Pd ₃₀	3.40	1.2967	139.69	95.77	285.90
Zr ₇₀ Co ₃₀	3.40	1.1410	81.53	127.93	337.20
$Pd_{35}Zr_{65}$	3.65	1.7147	265.78	96.53	279.61
Pb90CU10	3.70	1.3713	203.98	192.83	128.80

Research Article

Adv. Mat. Lett. 2012, 3(4), 321-329

Zr75Rh25

0.6534

Advanced Materials *Letters*

Sn ₉₀ Cu ₁₀	3.70	1.3469	171.24	113.18	214.30
Zr ₇₅ Rh ₂₅	3.75	1.3567	140.90	94.14	338.25
Pb75Bi25	4.25	1.7684	212.40	207.64	108.50
Pb50Bi50	4.50	1.7501	221.40	208.09	112.00

Table 2. Electron-phonon coupling strength (λ) of binary metallic glasses.

Metallic glass	Present	Expt. [2, 28]	Others [4-22]
Au ₈₄ Si ₁₆	0.5670	_	0.6332
Mg _{85.5} Cu _{14.5}	0.4752	-	0.5376
Ca ₇₀ Mg ₃₀	0.8353	-	0.89, 0.83, 1.07, 1.26, 1.26, 1.31, 1.75, 1.82, 2.04
Ca ₇₀ Zn ₃₀	0.5546	_	0.5823
Mg70Zn30	0.5450	0.30	0.501,0.33, 0.48, 0.48, 0.61
Mg ₈₄ Ni ₁₆	0.3295	-	0.3912
Cu ₆₆ Ti ₃₄	0.8956	-	1.0274
$Be_{90}Al_{10}$	0.5847	-	0.7820, 0.644, 0.644, 0.643
Cu60Zr40	0.4307	-	0.436, 0.402, 0.394, 0.3908, 0.3852
Ni ₈₁ B ₁₉	0.2729	-	0.3602
Be70Al30	0.7207	-	0.761, 0.616, 0.614, 0.613
$Cd_{90}Ge_{10}$	0.5666	-	0.6447
Cu33Y67	0.3190	_	0.3738
Cu555Zr45	0.4614	-	0.4746,0.4387, 0.4297, 0.4259, 0.4199
Ca60Al40	1.2462	-	1.3571
Cu502r50	0.4913	-	0.4973,0.4603, 0.4498, 0.4459, 0.4396
La80Au20	0.7954	-	0.8512
Cu45Zr55	0.5141	-	0.520,0.482,0.470, 0.466,0.4596
Ni33Y67	0.3279	-	0.6914
Ni31Dy69	0.2754	-	0.3580
Cu43Ti57	1.1124	-	1.2836
Cu40Zr60	0.5445	_	0.550, 0.510, 0.497, 0.493, 0.486
Cu35Zr65	0.5618	_	0.576, 0.536, 0.521, 0.5175, 0.510
Cu60W40	1.0448	_	1.2031
Fe80B20	1.3589	_	1.6168
Fe83B17	0.7349	_	0.8987
La80Ga20	0.7672	_	0.8335
Ni50Zr50	0.7258	_	0.8574
Cu33Zr67	0.5681	_	0.583,0.542, 0.527, 0.523, 0.516
Cu577Zr43	0.6026	_	0.6911
Cu30Zr70	0.5873	_	0.474,0.438, 0.429, 0.425, 0.419
Fe90 Zr10	1.0164	_	1.1986
Ni ₆₀ Nb ₄₀	1.5220	-	1.7884
Pd80Si20	1.9329	_	2.2570
Cu25Zr75	0.6055	_	0.619,0.578, 0.560, 0.556,0.548
Ni ₃₆ Zr ₆₄	0.8016	_	0.9430
$Tl_{90}Te_{10}$	1.0085	1.7	1.9728, 0.77,0.84
Co ₆₇ Zr ₃₃	1.5736	-	1.8213
Zr ₆₇ Ni ₃₃	0.7400	-	0.8604
$Fe_{80}P_{20}$	0.6243	-	0.7854
$In_{80}Sb_{20}$	0.9773	1.7	1.770, 0.80,1.00
$Zr_{70}Be_{30}$	0.5432	-	0.6837
Zr70Pd30	0.5793	-	0.6723
Zr ₇₀ Co ₃₀	0.5764	-	-
Pd35Zr65	0.5774	-	0.6462
Pb90Cu10	1.0554	2.0	1.1531
$Sn_{90}Cu_{10}$	0.8548	1.84	1.8402

Pb ₇₅ Bi ₂₅	1.2108	2.76	2.7603,1.08,1.33
Pb50Bi50	1.1949	-	1.9138

0.7615

Using $X = q/2k_F$ and $\Omega_o = 3\pi^2 Z/(k_F)^3$, we get Eq. (2) in the following form,

$$\lambda = \frac{12 \,\mathrm{m_b} \,Z}{\mathrm{M} \,\langle \omega^2 \rangle} \int_0^1 \mathrm{X}^3 \, \big| \, \mathrm{W}(\mathrm{X}) \big|^2 \, \mathrm{dX} \tag{3}$$

where Z and W(X) are the valence of the binary metallic glasses and the PAA screened EMC pseudopotential [26] for binary mixture, respectively.

The Coulomb pseudopotential μ^* is given by [4-24]

$$\mu^{*} = \frac{\frac{m_{b}}{\pi k_{F}} \int_{0}^{1} \frac{dX}{\varepsilon(X)}}{1 + \frac{m_{b}}{\pi k_{F}} \ln\left(\frac{E_{F}}{10\theta_{D}}\right) \int_{0}^{1} \frac{dX}{\varepsilon(X)}}$$
(4)

where E_F is the Fermi energy, m_b the band mass of the electron, θ_D the Debye temperature and $\varepsilon(X)$ the modified Hartree dielectric function, which is written as [4-15]

$$\varepsilon(\mathbf{X}) = 1 + (\varepsilon_{\mathrm{H}}(\mathbf{X}) - 1) (1 - f(\mathbf{X})) \quad (5)$$

here $\varepsilon_{\rm H}(X)$ is the static Hartree dielectric function [27] and the expression of $\varepsilon_{\rm H}(X)$ is given by,

$$\varepsilon_{H}(X) = 1 + \frac{\mathrm{me}^{2}}{2\pi k_{F} \hbar^{2} \eta^{2}} \left(\frac{1 - \eta^{2}}{2\eta} \ln \left| \frac{1 + \eta}{1 - \eta} \right| + 1 \right); \eta = \frac{q}{2k_{F}}$$
(6)

While f(X) is the local field correction function. In the present investigation, the local field correction function due to Farid *et al.* (F) [24] is incorporated to see the impact of exchange and correlation effects. The details of all the local field corrections are below.

Farid *et al.* (F) **[24]** have given a local field correction function of the form

$$f(X) = A_F Q^4 + B_F Q^2 + C_F + \left[A_F Q^4 + D_F Q^2 - C_F\right] \left\{ \frac{4 - Q^2}{4Q} \ln \left| \frac{2 + Q}{2 - Q} \right| \right\}$$
(7)

where Q = 2X. The parameters A_F , B_F , C_F and D_F are the atomic volume dependent parameters F-local field correction function. The mathematical expressions of these parameters are narrated in the respective paper of the local field correction function [24].

Table 3. Coulomb pseudopotential (μ^{*}) of binary metallic glasses.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	9
$Ca_{70}Mg_{30}$ 0.1854 0.2130,0.14,0.14,0.15, 0.16, 0.18, 0.19	9
$Ca_{70}Zn_{30}$ 0.1873 0.2142	
$Mg_{70}Zn_{30} \qquad 0.1677 \qquad 0.2178, 0.12, 0.14, 0.16, 0.17$	
$Mg_{84}Ni_{16}$ 0.1735 0.2227	
$Cu_{66}Ti_{34}$ 0.1567 0.2979	
Be ₉₀ Al ₁₀ 0.1753 0.2694,0.191,0.191, 0.191	
$Cu_{60}Zr_{40}$ 0.1567 0.1486, 0.1439, 0.1398, 0.1384, 0.136	9
$Ni_{81}B_{19}$ 0.1640 0.2382	
$Be_{70}Al_{30} 0.1737 0.2604, 0.166, 0.166, 0.166$	
$Cd_{90}Ge_{10}$ 0.1550 0.1936	
$Cu_{33}Y_{67}$ 0.1696 0.2102	
$Cu_{55}Zr_{45}$ 0.1555 0.1473,0.1428,0.1387, 0.1373, 0.1359	9
$Ca_{60}Al_{40}$ 0.1756 0.2115	
Cu ₅₀ Zr ₅₀ 0.1544 0.1461,0.1417,0.1375, 0.1363, 0.1359	9
La ₈₀ Au ₂₀ 0.1539 0.1825	
Cu ₄₅ Zr ₅₅ 0.1534 0.1449,0.1406,0.1365, 0.1353, 0.1340)
Ni ₃₃ Y ₆₇ 0.1685 0.5140	
Ni ₃₁ Dy ₆₉ 0.1618 0.2056	
$Cu_{43}Ti_{57}$ 0.1508 0.2048	
$Cu_{40}Zr_{60}$ 0.1525 0.1437,0.1395, 0.1354, 0.1343,0.133	0
Cu ₃₅ Zr ₆₅ 0.1516 0.1425, 0.1385, 0.1344, 0.1334, 0.132	1
$Cu_{60}W_{40}$ 0.1403 0.1930	
$Fe_{80}B_{20}$ 0.1420 0.2053	
$Fe_{83}B_{17}$ 0.1486 0.2180	
$La_{80}Ga_{20} = 0.1547 = 0.1874$	
$N_{150}Zr_{50} = 0.1517 = 0.2054$	
$Cu_{33}Zr_{67}$ 0.1513 0.1420.0.1381, 0.1340, 0.1330, 0.132	1
$Cu_{57}Zt_{43}$ 0.1585 0.2052	
$Cu_{30}Zr_{70}$ 0.1508 0.1414.0.1375.0.1334.0.1324.0.131	2
$Fe_{00}Zr_{10} = 0.1459 = 0.2066$	-
$N_{i_{0}}N_{b_{10}}$ 0 1404 0 1944	
$Pd_{so}Si_{20} = 0.1405 = 0.1901$	
$Cu_{25}Zr_{75}$ 0 1501 0 1402 0 1365 0 1324 0 1315 0 1303	:
$N_{12}Zr_{c}$ 0.1517 0.2051	
$T_{100}T_{010} = 0.1333 = 0.1624 = 0.11 = 0.11$	
$C_{0e7}Zr_{22} = 0.1423 = 0.1960$	
$Zr_{c2}Ni_{22}$ 0.1521 0.2057	
$E_{0}P_{0} = 0.1501 = 0.2027$	
$I_{1000}Sb_{20} = 0.1383 = 0.1726 0.12 0.12$	
$Zr_{70}Be_{20}$ 0.1639 0.2302	
$7r_{70}Pd_{20}$ 0.1478 0.1960	
$Zr_{70}Co_{20}$ 0.1365	
$Pd_{-7}r_{-} = 0.1650 - 0.2042$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$1090Cu_{10} = 0.1372 = 0.1730$ Sn ₂ -Cu ₂ = 0.1440 = 0.1873	
7_r Db 0.1447 0.1075	
$\frac{2}{2} \frac{1}{100} \frac{1}{1$	
$Pb_{50}Bi_{50} = 0.1337 = 0.1607, 0.11, 0.12$	

After evaluating λ and μ^* , the transition temperature T_C and isotope effect exponent α are investigated from the McMillan's formula [4-23]

$$T_{\rm C} = \frac{\theta_{\rm D}}{1.45} \exp\left[\frac{-1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right]$$
(8)

$$\alpha = \frac{1}{2} \left[1 - \left(\mu^* \ln \frac{\theta_{\rm D}}{1.45 T_{\rm C}} \right)^2 \frac{1 + 0.62\lambda}{1.04(1 + \lambda)} \right]$$
(9)

The expression for the effective interaction strength $N_0 V$ is studied using [4-22]

$$\mathbf{N}_{\mathrm{O}}\mathbf{V} = \frac{\lambda - \mu^{*}}{1 + \frac{10}{11}\lambda} \tag{10}$$

Results and discussion

The input parameters are other constants used in the present computation of the SSP of fifty metallic glasses are shown in **Table 1**. To determine the input parameters and various constants for PAA model, the following definitions for binary metallic glasses ($A_{1-X}B_X$) are adopted [4-15],

$$Z = (1 - X)(Z_A) + X(Z_B)$$

$$\tag{11}$$

$$M = (1 - X)(M_A) + X(M_B)$$
(12)

$$\Omega_O = \left(1 - X\right) \left(\Omega_{OA}\right) + X\left(\Omega_{OB}\right) \tag{13}$$

$$\theta_D = \left(1 - X\right) \left(\theta_{DA}\right) + X\left(\theta_{DB}\right) \tag{14}$$

where 'X' is the concentration factor of the second metallic component. The graphical representation of the model potential parameter and input parameters with valence are displayed in **Fig. 1-2**.

In the present work, we used $m_b = 1$ for the sake of uniformity. The presently calculated superconductor state parameters of binary metallic glasses are tabulated in **Table 2-6** with experimental [2, 28-31] and other such available theoretical [4-22] findings. The graphical nature of the superconductor state parameters with atomic concentration (X) of the second metallic component (in at %) and valance of the binary metallic glasses are displayed in Fig. 3-5.

The computed values of the electron-phonon coupling strength λ for binary metallic glasses are shown in **Table** 2 with other such experimental [2, 25] and theoretical [4-22] data, which are found to be in good agreement with them. It is seen from Table 2 that, the electron-phonon coupling strength $\lambda \leq 1$ for 46 binary metallic glasses while for 12 binary metallic glasses $\lambda > 1$. One can also observe that λ goes on increasing from the values of $0.3158 \rightarrow 0.6055$ as the concentration of 'Zr' increases from 0.40 to 0.75 in the series of Cu-Zr metallic glasses. Such increase in λ shows a gradual transition from weak coupling behaviour to intermediate coupling behaviour of electrons and phonons, which may be attributed to an increase of the hybridization of sp-d electrons of Zr-with increasing concentration, as was also observed by Minnigerode and Samwer [32]. This may also be attributed to the increase role of ionic vibrations in the Zrrich region [16-22].

The computed values of the Coulomb pseudopotential μ^* , which accounts for the Coulomb interaction between the conduction electrons are tabulated in **Table 3** with other such theoretical data [4-22]. It is observed that, the

values of μ^* for all binary metallic glasses lie between 0.12 and 0.19, which is in accordance with McMillan [24], who suggested $\mu^* \approx 0.13$ for transition metals. The weak screening influence shows on the computed values of the μ^* . The present results are found to be in good agreement with available theoretical data [4-22]. Here it is also seen that, as the concentration (X) of Cu (in at %) increases the present results of μ^* decreases. The experimental data of μ^* is not available in the literature.

Table 4. Transition temperature (T_C) of binary metallic glasses.

Metallic glass	Present	Expt. [2, 28-31]	Others [4-22]
Au.Si.	1 4970		1.4015
Au ₈₄ 51 ₁₆	0.5750	-	0.4201
1v1g85.5Cu14.5	0.3750	-	5 8 6 2 10 0 15 2 17 2 17 2 20 0
Ca70Mg30	6.2006	-	21.7, 24.2
Ca ₇₀ Zn ₃₀	0.9485	_	0.6875
Mg70Zn30	1.5825	1.4, 0.7, 0.11	1.4, 0.096, 0.8, 1.2, 2.59
Mg ₈₄ Ni ₁₆	0.0031	-	0.0010
Cu666Ti34	12.2584	_	11.727
Be90Al10	7.8691	7.2	7.214 , 7.24 , 7.56, 7.19
$Cu_{60}Zr_{40}$	0.3668	0.31	0.52,0.31, 0.31, 0.296, 0.2759
$Ni_{81}B_{19}$	0.0000	-	0.0000
Be ₇₀ Al ₃₀	17.3195	6.1	6.1529, 6.12, 6.15, 6.11
$Cd_{90}Ge_{10}$	1.6241	1.6	1.6004
Cu33Y67	0.0016	-	0.0009
$Cu_{55}Zr_{45}$	0.6581	0.65	0.98,0.65, 0.63, 0.61, 0.574
$Ca_{60}Al_{40}$	17.2204	-	16.635
$Cu_{50}Zr_{50}$	1.0371	0.92	1.34, 0.92, 0.88, 0.86, 0.81
$La_{80}Au_{20}$	3.7257	3.5	3.50
Cu45Zr55	1.3902	1.25	1.747, 1.25, 1.18, 1.15, 1.09
Ni ₃₃ Y ₆₇	0.0041	-	0.0025
Ni31Dy69	0.00004	-	0.0004
Cu43Ti57	19.7244	-	19.106
$Cu_{40}Zr_{60}$	1.9226	1.75	2.34, 1.75, 1.65, 1.61, 1.536
Cu35Zr65	2.2632	2.25	2.93, 2.25, 2.11, 2.07, 1.98
$Cu_{60}W_{40}$	15.1956	-	14.73
$Fe_{80}B_{20}$	33.6922	-	32.98
Fe83B17	12.7394	_	12.09
$La_{80}Ga_{20}$	4.0439	3.8	3.804
Ni ₅₀ Zr ₅₀	7.3515	-	7.277
Cu33Zr67	2.3928	2.38	3.09, 2.39, 2.2, 2.19, 2.107
Cu577Zr43	2.9325	-	2.6834
Cu ₃₀ Zr ₇₀	2.7929	2.78	2.53, 2.78, 2.6, 2.57, 2.46
$Fe_{90}Zr_{10}$	20.3739	-	19.70
Ni ₆₀ Nb ₄₀	26.8349	-	26.72
Pd ₈₀ Si ₂₀	28.0394	-	27.97
Cu255Zr75	3.1945	3.18	3.98,3.19, 2.97, 2.924, 2.812
Ni ₃₆ Zr ₆₄	9.7121	_	9.6273
$Tl_{90}Te_{10}$	4.2377	4.2	8.7047, 3.07, 3.74
Co ₆₇ Zr ₃₃	28.0917	_	27.562
Zr ₆₇ Ni ₃₃	7.8175	-	7.3753
Fe80P20	7.9825	_	7.7548
In80Sb20	5.8249	5.6	11.464, 4.43, 6.63
Zr ₇₀ Be ₃₀	3.0980	2.8	2.4001
Zr ₇₀ Pd ₃₀	2.5697	2.4	2.4010
Zr ₇₀ Co ₃₀	3.5173	3.3	_
Pd35Zr65	1.8576	-	1.6627
$Pb_{90}Cu_{10}$	6.6594	6.5	6.5010
$Sn_{90}Cu_{10}$	7.0179	6.76	18.982
Zr ₇₅ Rh ₂₅	4.8593	4.55	4.5511
Pb ₇₅ Bi ₂₅	7.1085	6.91	13.742, 6.83, 8.73
$Pb_{50}Bi_{50}$	7.1966	6.99	10.844

Table 4 contains calculated values of the transition temperature T_C for binary metallic glasses along with experimental [2, 28-31] and theoretical [4-22] findings. The present results are found in good agreement with

them. Also, the above results indicate that simple metallic glasses having low valance of one or two tend to have low T_C value, while those involving high valence (more than three) tend to have higher T_C value. Perhaps only exceptions are seen in divalent Be-based metallic glasses where high T_C is likely to be due to unusually high Debye temperature.

|--|

Metallic glass	Present	Others [4-22]
Au ₈₄ Si ₁₆	0.253	0.1274
Mg _{85.5} Cu _{14.5}	0.051	-0.2638
Ca ₇₀ Mg ₃₀	0.338	0.28, 0.36, 0.39, 0.45, 0.46, 0.46, 0.52
Ca ₇₀ Zn ₃₀	0.085	-0.1078
Mg70Zn30	0.206	0.14,0.1,0.19, 0.23, 0.28
Mg ₈₄ Ni ₁₆	-1.228	-2.9043
Cu66Ti34	0.411	0.3421
$Be_{90}Al_{10}$	0.212	-0.1844, 0.192, 0.198, 0.191
$Cu_{60}Zr_{40}$	0.071	0.16, 0.12, 0.14, 0.14, 0.14
Ni81B19	-2.664	-9.8802
Be70Al30	0.323	-0.140, 0.286, 0.286, 0.285
$Cd_{90}Ge_{10}$	0.293	0.1788
Cu33Y67	-1.258	-2.4412
Cu55Zr45	0.154	0.23, 0.2063, 0.2194, 0.2225, 0.2220
$Ca_{60}Al_{40}$	0.427	0.3922
Cu50Zr50	0.213	0.2712],0.25, 0.257, 0.26, 0.26
La80Au20	0.397	0.3505
Cu452r55	0.249	0.30, 0.28, 0.29, 0.28, 0.28
Ni33Y67	-1.006	-2.1115
Ni31Dy69	-2.246	-2.7015
Cu43Ti57	0.443	0.3933
$Cu_{40}Zr_{60}$	0.285	0.33, 0.31, 0.32, 0.32, 0.32
Cu35Zr65	0.303	0.35,0.34, 0.34, 0.34, 0.34
$Cu_{60}W_{40}$	0.448	0.4007
$Fe_{80}B_{20}$	0.462	0.4210
Fe83B17	0.392	0.2664
$La_{80}Ga_{20}$	0.388	0.3315
Ni ₅₀ Zr ₅₀	0.383	0.2882
Cu33Zr67	0.309	0.35, 0.34, 0.35, 0.35, 0.35
Cu577Zr43	0.306	0.1662
$Cu_{30}Zr_{70}$	0.324	0.36, 0.35, 0.36, 0.36, 0.35
Fe90 Zr10	0.440	0.379
Ni ₆₀ Nb ₄₀	0.468	0.4392
$Pd_{80}Si_{20}$	0.475	0.4547
Cu ₂₅ Zr ₇₅	0.338	0.37, 0.37, 0.37, 0.37, 0.37
Ni ₃₆ Zr ₆₄	0.402	0.3236
$Tl_{90}Te_{10}$	0.452	0.4651,0.45, 0.46
Co ₆₇ Zr ₃₃	0.468	0.4391
Zr ₆₇ Ni ₃₃	0.386	0.2885
$Fe_{80}P_{20}$	0.347	0.1676
$In_{80}Sb_{20}$	0.445	0.4546
$Zr_{70}Be_{30}$	0.226	-0.087
$Zr_{70}Pd_{30}$	0.330	0.1958
Zr ₇₀ Co ₃₀	0.365	_
Pd ₃₅ Zr ₆₅	0.257	0.1146
$Pb_{90}Cu_{10}$	0.450	0.4216
$Sn_{90}Cu_{10}$	0.423	0.3747
Zr ₇₅ Rh ₂₅	0.364	0.2479
Pb75Bi25	0.462	0.472, 0.47, 0.47
Pb50Bi50	0.462	0 4715

The lower values of T_C for Mg₈₄Ni₁₆, Cu₃₃Y₆₇, Ni₃₃Y₆₇, Ni₈₁B₁₉ and Ni₃₁Dy₆₉ metallic glasses and higher values of T_C for Pd₈₀Si₂₀, Cu₆₆Ti₃₄, Cu₆₀Zr₄₀, Cu₆₀W₄₀, Fe₉₀ Zr₁₀, Ni₆₀Nb₄₀, Co₆₇Zr₃₃, Fe₈₀B₂₀ and Fe₈₃B₁₇ metallic glasses may be due to the electron transfer between the transition metal and other metallic element.

Table 6. Effective interaction strength ($N_{O}V$) of binary metallic glasses.

Metallic glass	Present	Others [4-22]
Au ₈₄ Si ₁₆	0.2661	0.2753
Mg _{85.5} Cu _{14.5}	0.2126	0.2175
Ca ₇₀ Mg ₃₀	0.3694	0.37,0.37,0.45,0.52,0.52, 0.52, 0.61, 0.63, 0.66
Ca ₇₀ Zn ₃₀	0.2442	0.2407
Mg70Zn30	0.2523	0.19,0.16,0.23,0.23, 0.29
Mg ₈₄ Ni ₁₆	0.1200	0.1243
Cu666Ti34	0.4073	0.4238
$Be_{90}Al_{10}$	0.2673	0.29,0.286, 0.288, 0.285
$Cu_{60}Zr_{40}$	0.1970	0.20,0.189,0.1875, 0.18, 0.18
$Ni_{81}B_{19}$	0.0872	0.091
$Be_{70}Al_{30}$	0.3305	0.296, 0.287, 0.288, 0.287
$Cd_{90}Ge_{10}$	0.2717	0.284
Cu ₃₃ Y ₆₇	0.1158	0.122
Cu55Zr45	0.2155	0.228, 0.21, 0.209, 0.208, 0.205
$Ca_{60}Al_{40}$	0.5020	0.5129
$Cu_{50}Zr_{50}$	0.2329	0.241, 0.22, 0.22, 0.220, 0.217
$La_{80}Au_{20}$	0.3723	0.3770
$Cu_{45}Zr_{55}$	0.2458	0.254, 0.24, 0.23, 0.232, 0.229
N133 Y 67	0.1228	0.1309
$N_{1_{31}}Dy_{69}$	0.0909	0.1150
$Cu_{43}T_{157}$	0.4781	0.4978
$Cu_{40}Zr_{60}$	0.2622	0.27, 0.254, 0.249, 0.248, 0.25
$Cu_{35}Zr_{65}$	0.2715	0.28, 0.267, 0.262, 0.26, 0.26
$Cu_{60}W_{40}$	0.4639	0.4825
$\Gamma e_{80} D_{20}$	0.3444	0.3715
$\Gamma e_{83} D_{17}$	0.3313	0.3740
$La_{80}Ga_{20}$ N; Z_r	0.3008	0.3070
$\Gamma n_{150}Z_{150}$	0.3439	0.3004 0.29.0.27.0.265.0.264.0.26
$Cu_{33}Zr_{67}$	0.2748	0.29,0.27, 0.205, 0.204, 0.20
$Cu_{57}Z_{143}$	0.2809	0.2764 0.298 0.28 0.275 0.27 0.270
Eeso Zris	0.2845	0.278, 0.28, 0.275, 0.27, 0.270
Ni coNh co	0.5796	0.6071
PdeoSi20	0.6501	0.6773
Cll25Zr75	0.2937	0 307 0 289 0 28, 0 282, 0 279
Ni ₂₆ Zr ₆₄	0.3759	0.3973
	0.4566	0.6481, 0.39, 0.41
$C_{067}Zr_{33}$	0.5889	0.6120
Zr ₆₇ Ni ₃₃	0.3515	0.3673
$Fe_{80}P_{20}$	0.3025	0.3282
$In_{80}Sb_{20}$	0.4446	0.6123, 0.39, 0.46
$Zr_{70}Be_{30}$	0.2539	0.2657
$Zr_{70}Pd_{30}$	0.2827	0.2956
Zr ₇₀ Co ₃₀	0.2887	_
$Pd_{35}Zr_{65}$	0.2705	0.2784
$Pb_{90}Cu_{10}$	0.4676	0.4785
$Sn_{90}Cu_{10}$	0.3994	0.4202
Zr ₇₅ Rh ₂₅	0.3165	0.3311
Pb ₇₅ Bi ₂₅	0.5127	0.739, 0.49, 0.55
Pb50Bi50	0.5086	0.7331

The increase in T_c has also been attributed to the excitonic mechanism resulting from the granular structure separated by semiconducting or insulating materials [2]. It is also seen that, T_c decreases almost linearly with increasing Cu-concentration (X). The value of T_c is found in the range, which is suitable for further exploring the applications of the metallic glasses for usage like lossless transmission line for cryogenic applications. While metallic show good elasticity and could be drawn in the form of wires as such they have good chances of being used as superconducting transmission lines at low temperature of the order of 7K.

The values of the isotope effect exponent α for binary metallic glasses are tabulated in Table 5. The values of α show a weak dependence on the dielectric screening function. The negative value of α is observed in the case of some metallic glasses, which indicates that the electron-phonon coupling in these metallic complexes does not fully explain all the features regarding their superconducting behaviour. The comparisons of present results with other such theoretical data [4-22] are highly encouraging. Since the experimental value of α has not been reported in the literature so far, the present data of α may be used for the study of ionic vibrations in the superconductivity of amorphous substances. The most important feature noted here is that as the concentration (X) of Cu (in at %) increases the present results of α decreases.

Fig. 1. Model potential parameter (r_c) Vs. valance (in at %).

The values of the effective interaction strength $N_O V$ are listed in **Table 6**. It is observed that the magnitude of $N_O V$ show that the metallic glasses under investigation lie in the range of weak coupling superconductors. The present results are found qualitative agreement with the available theoretical data [4-22]. The variation of present values of the $N_O V$ show that, the metallic glasses under consideration fall in the range of weak coupling superconductors. It is also observed that as

the concentration (X) of Cu (in at %) increases the present results of $N_{0}V$ decreases.

The graphical nature of the superconducting state parameters with concentration (in at %) of the second metallic component is displayed in Fig. 3. Also, presently computed transition temperature T_C of binary metallic glasses is shown in Fig. 4, while Fig. 5 represented the variation of the transition temperature T_C with valance of binary metallic glasses. All the graphs suggested that, the reported binary metallic glasses are exhibiting superconducting nature in the present case.

Fig. 2. Input parameters Vs valance (in at %).

It can be noted from the **Table 2-6** that, when we go from $Be_{90}Al_{10} \rightarrow Zr_{75}Rh_{25}$ metallic glasses of superconducting-superconducting (S-S) elements, the SSP increases except for Zr70Be30 and Zr75Rh25 metallic glasses the SSP decreases. While in the case of metallic glasses of superconducting-conditional superconducting (S-S')elements (i.e. $Ca_{70}Zn_{30} \rightarrow Pb_{50}Bi_{50}$), the SSP increases except the SSP for Tl₉₀Te₁₀, In₈₀Sb₂₀ and Pb₅₀Bi₅₀ decreases. In the case of metallic glasses of superconducting-non superconducting (S-NS) elements (i.e. $Au_{84}Si_{16} \rightarrow Fe_{80}P_{20}$), the SSP decreases except for $Ni_{33}Y_{67},\ Pd_{80}Si_{20}$ and $Fe_{80}P_{20}$ metallic glasses the SSP increases. While in the case of metallic glass of conditional superconducting-conditional superconducting (S'-S') elements (i.e. $Ca_{70}Mg_{30}$), the present results of the SSP show an excellent agreement with the available data. Also, the metallic glasses of conditional superconductingnon superconducting (S'-NS) elements, when we go from $Cu_{66}Ti_{34} \rightarrow Sn_{90}Cu_{10}$, the SSP increases except the SSP for $Ni_{50}Zr_{50}$, $Fe_{90} Zr_{10}$, $Ni_{36}Zr_{64}$, $Zr_{67}Ni_{33}$, $Zr_{70}Pd_{30}$, $Pd_{35}Zr_{65}$ and $Sn_{90}Cu_{10}$ decreases. The SSP of metallic glasses of non-superconducting-non superconducting (NS-NS) elements (i.e. $Ni_{81}B_{19} \rightarrow Fe_{83}B_{17}$), the SSP increases except for $Fe_{83}B_{17}$ metallic glass the SSP decreases.

Fig. 3. Superconducting state parameters (SSP) Vs. concentration (in at %).

All the metallic glasses are based on superconducting (S) (Be, Al, Ti, Zn, Ga, Zr, Nb, Rh, Cd, In, Sn, W, Tl, Pb and La), conditional superconducting (S') (Mg, Si, P, Ca and Bi) and non-superconducting (NS) (B, Fe, Co, Ni, Cu, Ge, Y, Pd, Sb, Te, Au and Dy) elements of the periodic table. Most of the amorphous alloys exhibit the superconductivity phenomena under pressure or as thin film. But, in the present case, these theoretical computations show all the metallic glasses of different elements of the periodic table exhibit superconductivity is highly affected by the nature of the superconductivity is highly affected by the reason that, the composing elements of the metallic glasses are played an important role in the nature of the SSP.

According to Matthias rules [33, 34], binary metallic glasses having Z<2 do not exhibits superconducting nature. Hence, $Au_{84}Si_{16}$ and $Mg_{85.5}Cu_{14.5}$ metallic glasses are non-superconductors, but they exhibit superconducting nature in the present case. When we go from Z=2 to

Z=4.5, the electron-phonon coupling strength λ changes with lattice spacing "a". Similar trends are also observed in the values of T_C for all metallic glasses. Hence, a strong dependency of the SSP of the metallic glasses on the valence Z is found, which was shown in the **Fig. 5**.

35 Present Results Expt. 30 25 Transition Temprature (T_c in K) 20 15 10 5 0 50 70 10 30 Concentration (at %)

Fig. 4. Transition temperature (T_C in K) vs concentration (in at %).

For comparison of SSP, theoretical or experimental data for only forty nine metallic glasses are available in the literature. This comparisons show qualitative results and favours applicability of EMC model potential with PAA approach in studying the SSP of the binary metallic glasses. In contrast with the reported studies, the present study spans the metallic glasses based on the large number of the superconducting (S), conditional superconducting (S') and non-superconducting (NS) elements of the periodic table on a common platform of model potential. Hence, the present investigation provides an important set of data for these metallic glasses which can be very useful for further comparison either with theory or experiment.

Lastly, we would like to emphasize the importance of involving a precise form for the pseudopotential. It must be confessed that although the effect of pseudopotential in strong coupling superconductor is large, yet it plays a decisive role in weak coupling superconductors i.e. those substances which are at the boundary dividing the superconducting and nonsuperconducting region. In other words, a small variation in the value of electron-ion interaction may lead to an abrupt change in the superconducting properties of the material under consideration. In this connection we may realize the importance of an accurate form for the pseudopotential.

Fig. 5. Transition temperature (T_C in K) Vs. valance.

Conclusion

The comparison of presently computed results of the SSP of the metallic glasses based on the large number of superconducting (S), conditional superconducting (S') and non-superconducting (NS) elements of the periodic table with available theoretical and experimental findings are highly encouraging, which confirms the applicability of the EMC model potential and different forms of the local field correction functions. A strong dependency of the SSP of metallic glasses on the valence Z is found. The T_{C} obtained from F-local field correction function are found an excellent agreement with available theoretical or experimental data. The experimentally observed values of the SSP are not available for the most of the metallic glasses therefore it is difficult to drew any special remarks. However, the comparison with other such theoretical and experimental data supports the present approach of PAA. Such study on SSP of other multi component amorphous alloys is in progress.

Reference

- Allen, P. B. in *Handbook of Superconductivity*, Poole, C. P., Jr. (Eds.); Academic Press: New York, **1999**, pp. 478.
- 2. Narlikar, A. V.; Ekbote, S. N. Superconductivity and Superconducting Materials; South Asian Publishers: New Delhi, **1983**.
- Vonsovsky, S. V.; Izyumov Yu. A.; Kurmaev E. Z. Superconductivity of Transition Metals, their Alloys and Compounds; Springer-Verlag: Berlin-Heidelberg-New York, 1982.
- 4. Vora Aditya M.: *Comp. Mater. Sci.* **2007**, 40, 492. **DOI:** <u>10.1016/j.commatsci.2007.02.007</u>
- Vora Aditya M.: J. Phys. Chem. Sol. 2008, 69, 1841. DOI: <u>10.1016/j.jpcs.2008.01.016</u>
- 6. Vora Aditya M.: *Physica C* **2009**, 469, 241. **DOI:** <u>10.1016/j.physc.2009.02.001</u>
- Vora Aditya M.: *Phys. Scr.* 2007, 76, 204.
 DOI: 10.1088/0031-8949/76/2/013
- Vora Aditya M.: J. Non-Cryst. Sol. 2008, 354, 5022.
 DOI: <u>10.1016/j.jnoncrysol.2008.07.028</u>
- Vora Aditya M.: J. Non-Cryst. Sol. 2011, 357, 2039.
 DOI: 10.1016/j.jnoncrysol.2011.02.023
- Vora Aditya M.: Latvian J. Phys. Tech. Sci. 2011, 48, 42.
 DOI: <u>10.2478/v10047-011-0004-y</u>
- 11. Vora Aditya M.: *Physica C* **2010**, 470, 475. **DOI:** <u>10.1016/j.physc.2010.04.001</u>
- 12. Vora Aditya M.: FIZIKA A 2010, 19, 279
- 13. Vora Aditya M.: The African Phys. Rev. 2010, 4, 95.
- 14. Vora Aditya M.: Turkish J. Phys. 2008, 32, 219.
- 15. Vora Aditya M.: J. Tech. Phys. 2007, 48, 3.
- Sharma, S.; Sharma, K. S.; Khan, H. Czech J. Phys. 2005, 56, 1005. DOI: <u>10.1007/s10582-005-0099-6</u>
- 17. Sharma, S.; Sharma, K. S.; Khan, H. Supercond. Sci. Technol. 2004, 17, 474.
 - **DOI:** <u>10.1088/0953-2048/17/3/029</u>
- Sharma, S.; Khan, H.; Sharma, K. S. Phys. Stat. Sol. (b) 2004, 241, 2562.
 DOI: 10.1002/pssb.200402039
- Sharma, S.; Khan, H.; Sharma, K. S. Ind. J. Pure & Appl. Phys. 2003, 41, 301.

- 20. Gupta, M.; Agarwal, P. C.; Sharma, K. S.; Dass, L. Phys. Stat. Sol. (b) 1999, 211, 731.
 DOI: 10.1002/(SICI)1521-3951(199902)211:2<731::AID-
- PSSB731>3.0.CO;2-Y 21. Gupta, M.; Sharma, K. S.; Dass, L. Pramana -J. Phys. **1997**, 48, 923.
- Sharma, R.; Sharma K. S.; Supercond. Sci. Technol. 1997, 10, 557.
- DOI: <u>10.1088/0953-2048/10/8/005</u>
 23. McMillan, W. L. *Phys. Rev.* **1968**, 167, 331.
 DOI: <u>10.1103/PhysRev.167.331</u>
- Farid, B.; Heine, V.; Engel, G. E.; Robertson, I. J. *Phys. Rev. B* 1993, 48, 11602.
- **DOI:** <u>10.1103/PhysRevB.48.11602</u> 25. Ashcroft, N. W. *Phys. Lett.* **1966**, 23, 48.
- **DOI:** <u>10.1016/0031-9163(66)90251-4</u> 26. Butler, W. H. *Phys. Rev. B* **1977**, 15, 5267.
- **DOI:** <u>10.1103/PhysRevB.15.5267</u> 27 Harrison W A *Elementary Electroni*
- 27. Harrison, W. A. *Elementary Electronic Structure*; World Scientific: Singapore, **1999**.
- Calka, A.; Madhaua, M.; Polk, D. E.; Giessen, B. C.; Matyja, H.; Sande, Van der J. *Scr. Metall.* **1977**, 11, 65.
 DOI: <u>10.1016/0036-9748(77)90015-1</u>
- Berg, van den R.; Grondey, S.; Kastner, J.; Lohneysen, H. v. Solid Stat. Commun. 1983, 47, 137.
 DOI: 10.1016/0038-1098(83)90625-7
- Altounian, Z.; Strom-Olsen, J. O. *Phys. Rev. B* 1983, 27, 4149.
 DOI: <u>10.1103/PhysRevB.27.4149</u>
- Johnson, W. L. in *Glassy Metals I*, Güntherodt, H. –J.; Back, H. (Eds.); Springer-Verlag: Berlin, **1981**, pp. 199.
- Minnigerode, von G.; Samwer, K. *Physica B* 1981, 108, 1217. DOI: <u>10.1016/0378-4363(81)90909-8</u>
- Matthias, B. T. in *Progress in Low Temperature Physics*, Gorter, C. J. (Eds.); North Holland: Amsterdam, **1957**, Vol. 2.
- Matthias, B. T. *Physica* 1973, 69, 54.
 DOI: <u>10.1016/0031-8914(73)90199-7</u>

Advanced Materials Letters

Publish your article in this journal

ADVANCED MATERIALS Letters is an international journal published quarterly. The journal is intended to provide top-quality peer-reviewed research papers in the fascinating field of materials science particularly in the area of structure, synthesis and processing, characterization, advanced-state properties, and applications of materials. All articles are indexed on various databases including DOAJ and are available for download for free. The manuscript management system is completely electronic and has fast and fair peer-review process. The journal includes review articles, research articles, notes, letter to editor and short communications.

