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ABSTRACT 

Transparent conducting oxide CdO has a wide range of applications in optoelectronics. We present the results of electronic and 
optical properties of pure and transition metal ions Sc, Y and Ti- doped CdO. The electronic structure is calculated within the 
full-potential linearized augmented plane wave (LAPW) + local orbitals (lo). The calculated band gap for pure CdO is 0.51 eV 
and changes significantly with doping. The calculated bandgap for Sc-doped CdO (CSO) is 2.67 eV, for Y-doped CdO (CYO) 
is 2.93 eV, and for Ti-doped CdO (CTO) is 2.53 eV. The effect of doping is clearly seen in the optical absorption profiles as 
well as in the enhanced electrical conductivities. Due to the widened optical transparency window, doped TCO has nearly 75-
80% transmittance in the optical region. There is possibility of greater multiple direct and indirect interband transitions due to 
availability of more states compared to pure CdO.  Copyright © 2011 VBRI press.  
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Introduction  

CdO has been studied by photoemission spectroscopy and 
ellipsometry and also by linear combination of atomic 
orbitals (LCAO) and many body perturbation theoretical 

methods [1-4]. Doping of CdO system by Sc and Y has 

been investigated using the sX-LDA FLAPW scheme [5-7]. 
Titanium doped CdO has been fabricated and characterized 

by studying the optical and electrical properties [8-9]. Due 
to its high electrical conductivity and transparency in the 
optical region, CdO has been subject of study for some 
time. In an effort to study the enhancement of these 
properties for more applications, we compute the electronic 
properties of CdO doped with transition metal ions with 
ionic radii smaller than Cd

2+
. From a survey of literature it 

is seen that not much is known about the electronic 
structure of these doped transparent conducting oxides 
(TCO). To the best of our knowledge, the electronic band 
structure for Ti-doped CdO is not available in literature. In 
the present study we investigate the electronic structure, 
optical and transport properties of Sc, Y and Ti doped CdO 
(CSO, CYO, CTO) using full potential linear augmented 
plane wave method. 

 

Computational methodology 

We carry out this investigation using one of the most 

accurate band structure methods, the Wien2k code [10]. 
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This method is based on the density functional theory 
which employs the full potential linearized augmented 
plane wave and local orbitals (lo). The latest GGA 

proposed by Wu and Cohen [11] was used for the exchange 
and correlation potential. The RMTKmax was set equal to 7 
for the convergence parameter for which the calculation 
stabilizes and energy convergence is achieved. Here R is 
the smallest Muffin-tin radius and Kmax is the cut-off wave 
vector of the plane-wave. The maximum radial expansion 

lmax is set to be 10. A mesh with 47 k-points in the 
irreducible Brillouin zone (IBZ) were used for CdO as well 
as Sc-, Y- and Ti- doped CdO. The energy cut-off between 
the core and valence states was set at −6.0 Ry. We 
construct a 2×2×1 super cell to obtain 32 atoms in the unit 
cell. Cadmium ion is replaced by transition metal ion 
Scandium, Yttrium and Titanium to get the 1.6 % doped 
materials. 

 

Results and discussion 

Electronic properties 

Cadmium oxide adopts a face-centered-cubic rocksalt 
structure (space group no. 225) based on octahedral 

coordination around Cd with lattice parameters a=4.6953 A   
[2]. In the unit cell of CdO we have two nonequivalent Cd 
atoms and two kinds of O atoms. The radii for Sc

2+
, Y

2+
 

and Ti
3+

 are 0.745, 0.9 and 0.605 Å respectively, which is 
relatively smaller than 1.09 Å which is the ionic radius of 
Cd

2+
.   
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Fig. 1. Total density of states for Sc, Y and Ti-doped. 

 
The effect of tuning of the electronic structure through 

doping of 1.6 % atom of transition metal ions, Sc-, Y- and 
Ti of differing ionic radii is clearly observed in the total 

density of states (TDOS) as shown Fig. 1. The zero of the 
energy was set at the top of the valence band. The topology 
of the calculated bands (not shown here) is similar to earlier 

calculations [1, 3, 6, 7]. In the valence band, from the 
partial density of states (not shown here) 4d-states of Cd 
are found in the lowermost energy range –7.33 to –5.73 eV, 
whereas the 2p-states of O mainly contribute between –3.89 
eV to Fermi level EF. Some s, p and d states of Cd also 
contribute in this region. Conduction band of hybridized 5s 

and 5p states of Cd are spread from 0.5 to 5.99 eV. Higher 
p-states of Cd and O are found above 6.61 eV. 

From the computed density of states for Sc, Y and Ti-
doped CdO, it is observed that the lowermost energy states 
in the valence band (VB) region appear for the same 
energies –7.33 to –5.73. However, in the valence band 
region from –3.89  to 0 eV, due to replacement of the Cd 
ion by the dopant ions, d states of Cd contribute nearest to 
the Fermi level EF. Additional bonding  p-states of dopant 
ions with Cd p-states are also found within the VBM, at 
slightly lower energies. The s-states of Cd, O and Sc/Y/Ti 
also contribute to the energy states.  
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Fig. 2.  Dispersion of  Cd s-band due to doping with Sc/ Y/Ti atoms. 

 
In the conduction band (CB) there is substantial mixing 

of s, p and d states of Cd, O and dopant ion Sc/Y/ Ti 
leading to hybridized states. Due to the additional d-states 
of Sc-, Y- and Ti- in doped CdO, the states in the 
conduction band minimum (CBM) are blocked which leads 

to the well known Moss-Burstein (MB) effect or shift [12, 

13]. This shift is also called band filling, and results from 
the Pauli Exclusion principle. This shift is seen in 
semiconductors with increasing doping. For n-type doping 
as is seen in this case, the conduction band becomes 
significantly filled due to finite density of states. Due to the 
presence of antibonding p-states of the dopant ion, the s-
states of Cd are repelled strongly, which results in the 

shifting of the Cd s-band as shown in Fig. 2.  

 
Linear optical properties 

It is known that the optical response can be described by a 
complex frequency dependent  dielectric function 

 ( ) ( ) ( )1 2ω = ω +i ω   [14]. The imaginary part 
2 ( )  , 

which arises from  intraband and interband transitions, 
depends on density of states (DOS) and the momentum 

matrix p, and is calculated by considering all the possible 
transitions from occupied to unoccupied states (with fixed 

k-vectors) over the Brillouin zone (BZ). The absorption 
coefficient α(ω) are derived from ε2(ω). 
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Fig. 3. Calculated and experimental absorption      coefficient of doped 
CdO. 

 

In Fig. 3, the absorption coefficient α(ω) is plotted for 
photon energies from 0-15 eV. In the optical regions 
between 1.6 to 3.1 eV, there is very low absorption ~ 10 x 
10 

4 
/cm for doped CdO, which implies that because of the 

above described B-M shift, the interband transitions in the 
visible region are not possible. The filled states therefore 
block thermal or optical excitation. Consequently the 
measured band gap determined from the onset of interband 
absorption moves to higher energy (i.e. suffers "a blue 
shift"). Ti doped CdO shows some anomalous behavior 
since some weak absorption peaks in the IR region are 
found. Fig. 3 shows the close agreement of the FP-LAPW 
calculations with experimental absorption coefficients. The 
bandgap estimates are obtained from the extrapolating the 
linear portion of calculated α(ω). The calculated as well as 

experimental bandgap are listed in Table 1. The bandgap 
show an increasing trend with increasing ionic radii i.e. 
Y>Sc>Ti. Larger ionic radius dopant results in a larger 
optical band gap. About 75-80% transmittance is observed 
for pure CdO, whereas for doped-CdO, an average 
enhanced transmittance of 80-85% in the UV-Vis-NIR 
regions. 

The refractive index n measured at frequencies above 
the lattice vibrational frequency is also related to ε(0) by 

the relation (0) Re (0)n  . We have also listed the 

calculated refractive indices in Table 1, which can be 
derived from the real ε1. 
 
Transport properties 

Amongst the transparent conducting oxides, CdO has very 
low electrical resistivity. In order to see the effect of 
doping, the transport properties are also calculated. The 
calculations relies on a Fourier expansion of the band 
energies where the space group symmetry is maintained by 

using star functions. Properties such as conductivity, Hall 
and Seebeck coefficients can be obtained from the 

Boltzmann theory [15]. The density of states energy 
projected conductivity tensor is given in terms of  
 

2

,( , ) ( , ) ( , )i ki k e v i k v i k       -------------(1) 

 
where, τ is the relaxation time which depends on the band 

index i and k vector direction, and v is the group velocity.    
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Fig. 4. Calculated electrical conductivity of doped CdO using BoltzTrap.  
 
The electrical conductivity of CdO is enhanced due to 

the substitution of 1.6 % atom of dopant ion with ionic radii 
smaller than Cd ion, on doping. The most important charge 
transport property, the electrical conductivity as a function 

of temperature is shown in Fig. 4. Yttrium doped CdO 
shows maximum conductivity, whereas Ti-doped CdO 
shows anomalous behavior. The Sc-, Y- and Ti- doped 
CdOs exhibit n-type conductivity as determined from the 

negative Hall coefficients as shown in Table 1. 
 

Conclusion 

In this paper, we have presented the electronic and optical 
properties of pure and Sc-, Y-, Ti- doped CdO compound 
using the FP-LAPW method. The width of the 5s-Cd band 
is affected by the ionic radii of the dopant Sc/ Y/ Ti which 
can be seen from the width of the dispersed band. The 
optical absorption profiles clearly indicate that the doped-
TCO has possibility of greater multiple direct and indirect 
interband transitions compared to pure CdO. Thus doping 
of CdO with metallic ions of smaller radius than that of 
Cd

2+
 like Sc, Y, Ti etc. improves its optical and electrical 

properties and increases the optical gap. Calculation with 
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different doping concentrations and ionic radii are urgently 
required in order to improve the optical response. 
Table 1. Electronic and optical properties of pure and doped CdO. 
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Properties CdO ScC
dO 

YCdO TiCdO 

Ionic Radii (A°) 1.09 0.74 0.9 0.6 

 
 
 
 
 
Eg(eV) 

This 
Work 

0.51 2.67 2.93 2.53 

 
 
 
Previous 
Work 

  1 .0   [6] 
sX-LDA 
 
 

  1.61  [1] 
   LCAO 
 

  6.56  [3] 
    HF 

 
  0.5 [16] 

FP-LAPW 

   

Refractive Index 
(n) 

2.68 
 

2.82 2.28 12.34 

Hall Coefficient 
(RH)(cm3/C)(10-4) 

-3.81 -
0.13
4 

-0.120 -0.124 

Electrical 
Conductivity 
(σ)(1/Ω-1m-1)(104) 

3.966 16.6
8 

20.38 3.57 
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