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Introduction 

In such typical experiments, Coulomb drag (CD) is a 

transport effect in bilayer system, current is applied by a 

layer which is known as active layer and an induced 

voltage (drag voltage) is found across the other layer 

known as passive or drag layer. Where both the layers 

are electrically isolated. With the boundary condition, no 

current flow in passive layer but an induced voltage is 

found as shown in Fig. (1a). The induced voltage 𝑉𝐷  

caused by e-e interaction between the coupled layers 

rises to a frictional force that drags the passive layer 

electrons. The ratio of the induced voltage to the driving 
current which give the measurement of e-e interaction 

between the coupled layers, termed as the drag 

resistivity 𝜌𝐷. The resulting non- local 𝜌𝐷 is a direct 

problem of the rate of momentum transfer rate between 

the two layers by interaction of electron-electron, 

electron-hole, electron impurity, etc. 

𝜌𝐷 =
𝐸𝑑𝑟𝑎𝑔

𝑗𝑎𝑐𝑡𝑖𝑣𝑒
                                     (1) 

 Ultimately, Drag effect in bilayer electron systems is 

induced by fluctuations of the individual carrier density 

of the two layers [1]. However, a electric field along the 

normal direction is generated in a finite plane with 

uniformly distributed electric charge that doesn’t exert 

any lateral force on the carriers in drag layer. If both the 

layers are in the condition of Fermi liquid state, then the 

phase space argument [2] yields dependence of 

temperatures on drag rate as 𝜏𝐷
−1 ∝ 𝑇2. Detailed analysis 

contain from other experimental data yields the existence 

of additional mechanisms leading to frictional drag, such 

as phonons-mediated indirect interlayer interaction [3-6], 

Plasmon effects [7,8], and thermo electric phenomena 

[9]. 

 Consequently, by the time of experiment on 
coulomb drag effect was devoted to the numerically and 

quantitative measurement, for measuring the strength of 

the interactions due to induced field between quasi 

particle sub-systems in different-different semiconductor 

devices as GaAs quantum wells with the p-modulation 

doped structure [10,11], electron-electron bilayer system 

of 2D-3D AlGaAs/GaAs hetero-structures [9,12], 2D 

electron-electron in AlGaAs/GaAs DQW [2,9,13-15], 

respectively. Transport properties of two dimensional 

(2D) electron and hole systems have amassed a great 

interest. Theoretically, it may be realized that mutual 
Coulomb scattering between the coupled layers due to 

the results of the exchange of momentum ℏ𝑞 and energy 

ℏ𝜔 [16,17]. Following the ground breaking experimental 

work in the AlGaAs/GaAs double quantum wells (DQW) 

[2,15], there are so many articles of coulomb drag effect. 

Whereas the Coulomb mechanism [1,18-20] captures the 

effect’s most qualitative features, such as momentum 

transfer ℏ𝑞 may also contributed. Some of suggested the 

scattering phenemeno involved acoustic [21] and optical 

[22] phonons, Plasmon effects, and coupled Plasmon 
phonon modes [23]. Drag effect became an important 

part for measuring the many body properties, in the index 

of standard tool box in condensed matter physics of 

matter, after the turn of the century. It had been used to 

analyze the properties of e-e interactions in low density 
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regime of 2D electron systems [24], metal-insulator-

transition signatures in diluted 2D hole [25-28], quantum 

coherence of electrons [29-31] and composite fermions 

[32], excitons effects in e-h bilayers [33-35]. Interlayer 

interaction and associated transport properties were 

measured in hybrid devices consisting  quantum wire 

QW and quantum dot QD [36], a SC film and a 2D 

electron gas [37], Si metal oxide semiconductor systems 

[38], quantum point contacts [39], insulating SiNb films 
[40], e-h interaction in QW [41], grapheme mono-layers 

[31,42,43], and hybrid graphene semiconductor systems 

[44]. 

 On the theory side, there is an even richer field of 

CD which yields the variety of suggested, extensions and 

generalizations in the field the main coulomb drag 

problem. The Coulomb drag theory was extended to 

multilayer between two 2DEGs, which is an intriguing 

electronic system which typically consists of three or 

more layers based on Graphene and GaAs 2DEGs [45, 

46-49,61]. Though there are just a few experimental 
works on CD [31,50]. For the simplest such structure, the 

double quantum well (DQW), Coulomb drag in bilayer 

systems is a very interesting phenomenon. We consider 

two intrinsic DQW of GaAs separated by a barrier 𝑆𝑖𝑂2  

and 𝐴𝑙2𝑂3 . The theory [51] deals with the case of a large 

interlayer separation 𝑘𝐹𝑑 ≫ 1, where d is the thickness 

of the spacer and 𝑘𝐹 is the material’s Fermi wave vector. 

It is a well established result for the low temperature, 

large interlayer separation and high density limit that the 

𝜌𝐷 between two 2DEGs is proportional to temperature as 

𝑇2 and with the interlayer separation as 𝑑−4. 
 Our evolution doesn’t depend on the relation of 

energy-dispersion, structure of wave function and 

momentum. The article is organized as follows: current 

section is Introduction, after this model and theoretical 

formalism, Results and discussion are presented, and the 

paper is concluded with a brief summary. 

 

 
                (a)                                               (b) 

Fig. 1. Schematic drawing of the experimental geometry. The current 𝐼𝐴 

is applied from the active layer, and the voltage difference 𝑉𝐷  is 

induced in passive layer as shown in Fig. (1a). Schematic geometry 

illustration considered in Fig. (1b). The 2DEG is located within a QW 

and is defined by active and passive for its position along the z 

direction. The structure’s relative dielectric constants are given by 

𝜖1, 𝜖2, 𝜖3  as shown in Fig. (1b). 

Theoretical formalism 

With consideration the tunneling does not occur, the 

interlayer effective interaction (𝑈12(𝑞)) is caused by 

electron-electron static interaction in steady state and 

homogeneous system. The drag resistivity 𝜌𝐷 evaluated 
by the using the Boltzmann’s kinetic equation [18,19,52, 

53], the memory function formalism [1], and Kubo’s 

formulism [20,53,54]. The electron transport based on 

kinetic theory approach has certain advantages over other 

approaches as it allows one to account on equal footing 

for inter-layer and intra-layer interactions, and in 

principle, it may be extended to conditions of non-

equilibrium. For estimating of the drag response, the non-

equilibrium part of the electron distribution function is 

important, but there are also corresponding corrections to 

the electron polarization function that leads to drag 
resistivity contributions. In contrast, the functional form 

of the polarization function is strongly impacted by 

intralayer collisions [55]. In this report we calculate the 

𝜌𝐷 for a system of dielectric environment, composed as 

air/passive/barrier/active/substrate as shown in Fig. (1b). 

 The system may be interpret as the interaction is 

considered weak for large distance, high density, and low 

temperature limit, where tunneling, exchange, and any 

correlation effect haven’t taken.  

  

Drag Resistivity 𝜌𝐷 

We begin the study of drag resistivity with a general 

expression in interlayer Coulomb interactions [2,18,19, 

24,47,49], (where both layers are identical and 

symmetric), 

 

𝜌𝐷 = −
ℏ2

8𝜋2𝑒2𝑛1𝑛2𝑘𝐵𝑇
∫ 𝑑𝑞

∞

0

𝑞3|𝑈12(𝑞)|2 × 

  ∫ 𝑑𝜔
∞

0

|ℑ𝜒1(𝑞,𝜔)||ℑ𝜒2(𝑞,𝜔)|

𝑠𝑖𝑛ℎ2(
ℏ𝜔

2𝑘𝐵𝑇
)

            (2) 

 To evaluate the drag resistivity, we have a general 

solved equation, nonlinear susceptibility function and 

effective interlayer interaction are main function. This 

gives the dependency of temperature T, density n, 

interlayer distance d, etc. 

 

Nonlinear susceptibility function 

With following the general equation of the nonlinear 

susceptibility function 𝜒(𝑞, 𝜔) in low frequency regime 

(Ballistic regime) 𝜔𝜏 ≫ 1 or 𝑘𝐹ℓ ≫ 1. The Nonlinear 

susceptibility function of the individual layer response 

functions 𝜒1(2)(𝑞, 𝜔) [18,47,56] may be written as, 

 

   𝜒1(2)(𝑞, 𝜔) = − ∫
𝑑𝑘1(2)

4𝜋2

(𝑓0(𝜀1(2))−𝑓0(𝜀1(2)±ℏ𝜔))

𝜀1(2)−𝜀
1(2)′

±ℏ𝜔−𝑖𝛿
      (3a)       

  𝜒1(2)(𝑞, 𝜔) = −𝜈[1 −
𝜃(𝑞/𝑘𝐹−2)√(𝑞/𝑘𝐹)2−4

𝑞/𝑘𝐹
     (3b) 



  

 

 Second equation of Eq. (3b) is the response of 

polarisation function for static case, 𝜔 → 0. In this case, 

the imaginary part of the non interacting and nonlinear 

susceptibility function as [19,20,57], 

 

ℑ𝜒(𝑞, 𝜔) = − ∫
𝑑𝑘1

4𝜋2
(𝑓0(𝜀1) − 𝑓0(𝜀1 + ℏ𝜔)) ×  𝛿(𝜀1 + 𝜀1′ − ℏ𝜔) (4a) 

        ℑ𝜒(𝑞, 𝜔) =
2𝑚𝜈𝜔

ℏ𝑞

𝜃(2𝑘𝐹−𝑞)

√(2𝑘𝐹)2−𝑞2
                 (4b) 

 

 𝜃(2𝑘𝐹 − 𝑞) is Heaviside step function, 𝜈 is density 

of state. The temperature dependence of 𝜌𝐷, in this 
regime, is entirely determined by the denominator 

𝑠𝑖𝑛ℎ2(
ℏ𝜔

2𝑘𝐵𝑇
) in Eq. (2), which restricts the integral in 

frequencies, ℏ𝜔 < 2𝑘𝐵𝑇. 

 

Effective interaction [𝑈12(𝑞)] 

For measuring the screening properties of the conduction 

electrons in the layers, we employ the standard tool box 
of solving the Dyson equation for the coupled layer 

system within the random phase approximation (RPA) 

[20, 58]. This finally presents the standard equation of 

interlayer interaction as,  

                                𝑈12(𝑞) =
𝑈12

0 (𝑞)

𝜀𝑅𝑃𝐴(𝑞)
                         (5) 

 The effective interaction is obtained by evaluating 

the Eq. (5) for the interacting field due to a point source 

situated in one of the two layers. Dielectric tensor 

𝜀𝑅𝑃𝐴(𝑞), 

𝜀𝑅𝑃𝐴(𝑞) = (1 + 𝑈11
0 (𝑞)𝜒1(𝑞, 𝜔))(1 + 𝑈22

0 (𝑞)𝜒2(𝑞, 𝜔)) −
 (𝑈12

0 (𝑞))2𝜒1(𝑞, 𝜔)𝜒2(𝑞, 𝜔)                                               (6) 

 

Local form factors 

𝑈𝑖𝑖
0(𝑞) and 𝑈𝑖𝑗

0 (𝑞) are called bare intra and interlayer 

interaction respectively, and local form factor (LFF) 

𝐹𝑖𝑗(𝑞𝑑) are key equations. To evaluating the form factor 

𝐹𝑖𝑗(𝑞𝑑), electrostatic problem needs to solve with 

considering the different screening by the substrate, 

barrier, and air [46,47,59]. Let the dielectric environment 

where the dielectric constants of the layers are, 

 

                         𝜖 = {
𝜖1                        𝑧 > 𝑑
𝜖2                0 < 𝑧 < 𝑑
𝜖3                        𝑧 < 0

                  (7) 

 Using the solution of Poisson equation, the 𝑈11(𝑞), 

𝑈22(𝑞) and 𝑈12(𝑞) by [18,46,47,58,], 

               𝑈𝑖𝑗(𝑞) =
8𝜋𝑒2

𝑞
𝐹𝑖𝑗(𝑞)                          (8) 

 The bare inter- and intralayer potentials may be 
evaluated by the Poisson equation. With introduction of 

the Fourier transform of coulomb potential 𝜑(𝒒; 𝑧, 𝑧′) 

along the z direction. The form factors for non finite 

width [46,47,59], 

𝐹11(𝑑) =
𝜖2 exp(𝑞𝑑)[𝜖2 cosh(𝑞𝑑)+𝜖3sinh (𝑞𝑑)]

[(𝜖1+𝜖2)(𝜖3+𝜖2) exp(2𝑞𝑑)−(𝜖1−𝜖2)(𝜖3–𝜖2)]
            (9a) 

𝐹22(𝑑) =
𝜖2 exp(𝑞𝑑)[𝜖2 cosh(𝑞𝑑)+𝜖1sinh (𝑞𝑑)]

[(𝜖1+𝜖2)(𝜖3+𝜖2) exp(2𝑞𝑑)−(𝜖1−𝜖2)(𝜖3–𝜖2)]
          (9b) 

𝐹12(𝑑) =
𝜖2 exp(𝑞𝑑)

[(𝜖1+𝜖2)(𝜖3+𝜖2) exp(2𝑞𝑑)−(𝜖1−𝜖2)(𝜖3–𝜖2)]
          (9c) 

 

Result and Discussion 

We have used a general computational scheme and 
model to describe non-local transport in interactively 

coupled double layer systems at low temperature and 

ballistic regime We don’t have any experimental and 

theoretical data corresponding to our system and 

compare our results theoretically [2,18,19,24,47,49,61] 

and experimentally with [29] of similar results based on 

non-homogeneous dielectric environment where. Present 

approach is based on the Boltzmann kinetic theory, the 

route to existing formulation to attain the Eq. (2). With 

the low temperature limit 𝑇 ≪ 𝑇𝐹 , we have 𝜒1(2) ∝ 𝜔, 

the integration in Eq. (2) reads ∫ 𝑑𝜔
∞

0

𝜔2

𝑠𝑖𝑛ℎ2(
ℏ𝜔

2𝑘𝐵𝑇
)

∝ 𝑇3, 

which gives the 𝑇2 dependency of the 𝜌𝐷 in the limit of 

𝑇 ≪ 𝑇𝐹 . Note that this system is taken under the large 

interlayer distance 𝑘𝐹𝑑 ≫ 1. In the limit 𝑘𝐹𝑑 ≫ 1 drag 

resistivity behave with concentration and others as [2,18, 

19,24,47,49,61], 

  𝜌𝐷 ∝
𝑇2

𝑛3𝑑4                                       (10) 

 This is the same temperature dependence found for 

the transresistivity in ballistic 2DEG-2DEG bilayer [1,2, 

18-20]. The nature of 𝑇2 is not dependent of the relation 
of the energy dispersion, transport time and wave 

function overlap factors. However, the behavior might be 

changed if one provides corrections to the 𝜌𝐷 due to 

finite and non-finite temperature correction of 

susceptibility function, and in higher order terms in the 
interlayer interaction [60].  

 In this work, we assumed two 2D-GaAs quantum 

wells separated by 𝑆𝑖𝑂2  and 𝐴𝑙2𝑂3  as a barrier, AlGaAs 

use as substrate. Here we consider both the layers are 

identical, symmetry, and homogeneous, such as carrier 

concentration 𝑛1 = 𝑛2 = 𝑛 and effective mass 𝑚1 =
𝑚2 = 𝑚 are same. In our calculation we use material 

parameter appropriate for GaAs systems such as, 

effective mass m=0.067𝑚𝑒. Where 𝑚𝑒 = 9.1 ×
10−31 𝐾𝑔. mass of electron, dielectric constant of 
substrate, barrier and air are 13, 4 and 1, respectively. A 

theoretical calculation have presented to measure the 

resistivity based on the RPA method at electron density 

𝑛 = 2 × 1011 𝑐𝑚−2 as RPA method is reliable method 

for high density regime 𝑘𝐹𝑑 ≫ 1 [2,24,46,47,61], as 

shown in Fig. 2, Fig. 3. The carrier concentration n 

dependency with 𝜌𝐷 at T=10 K is shown as in Fig. (3).  

In this work, the inter-layer separation is set at d=20 nm, 

30 nm, the density is 𝑛 = 2 × 1011 𝑐𝑚−2, which tends to 



  

 

almost similar behavior as 𝜌𝐷 ∝ 𝑛−3 and 𝑇2 also  
shown in ref [2,24,29], we didn’t consider the giants 

fluctuations. We have measured closed data with [2,24, 

29,61] even our results are in good agreement with  

others [2,18,19,24,47,49,61]. Such as for the parameters, 

T=5 k, d=28 nm, 𝜖 = 13, and 𝑛 ∼ 3.1 × 1010 𝑐𝑚−2, 

𝜌𝐷 ∼ 16.78 Ω/cm2 compare to [62] without considering 
the different dielectric distribution function Eq. (7),  

as we have conceded better results compare to [2,29,61] 

results as shown in Fig. 2, with considering the different 

dielectric distribution function, T = 5 k, d = 30 nm,  
𝑛 ∼ 2 × 1011 𝑐𝑚−2, dielectric constants  used as Eq. (7), 

and 𝜌𝐷 ∼ 51 𝑚Ω. 

 
Fig. 2. The schematic diagram show the dependence of the  

resistivity 𝜌𝐷 with the temperature T (at low temperature (𝑇 ≪ 𝑇𝐹 ) as 

shown in figure for the GaAs quantum well with carrier concentration 

𝑛 = 2 × 1011 𝑐𝑚−2. The curves also show the dependence of the 

dielectric constant of the barrier (𝑆𝑖𝑂2  (𝜖2 = 4) and 𝐴𝑙2𝑂3  (𝜖2 = 4)) 

and interlayer distance (d=20 nm and 30 nm). 

 

 In this section, the drag resistivity 𝜌𝐷 behaviour as a 

function of charge carrier concentration n for 𝑘𝐹𝑑 ≫ 1 is 

shown as in Fig. 3, and as a function of temperature is 

shown as in Fig. 2.   

 

 

Fig. 3. The schematic diagram show the dependence of the resistivity 

𝜌𝐷 with the concentration for the GaAs quantum well at temperature 

T=10 k. 

 The second part of Eq. (2) as q integral, effective 

interaction plays a crucial role for 𝜌𝐷 measurement with 

the values of d and dielectric constants of the layers. 

Local form factor are the function of layer separation and 

dielectric constant etc., and also shows the layer 

separation dependency [61] as shown in Fig. 4.  

 

 

Fig. 4. Schematic diagram show the behaviour of the 𝜌𝐷 with interlayer 

separation d for the system of 𝑎𝑖𝑟/𝐺𝑎𝐴𝑠/𝑆𝑖𝑂2/𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠  as 

shown. 

 

 The resistivity 𝜌𝐷 at the low temperature T, large 

separation d, and high density n limit should behave as 

𝑑−4 by the general arguments here. Moreover, a 

dependence of 𝑑−6 was obtained in [52] and within the 

same limit. In [53], the 𝑑−6 results are due to estimating 

the function 𝜐𝑘⃗⃗,𝜆 , 𝜏𝑘⃗⃗,𝜆 used in [52] with 𝑞2, as 𝜐𝑘⃗⃗,𝜆 =

ℏ𝑞/𝑚 and 𝜏𝑘⃗⃗,𝜆 is linearly dependent of q. While it should 

be independent of q. 

 

Conclusion 

In this section, we discussed the work done in this article, 
with a short note. Here, we measure the CD numerically 

and analitically at low temperature in a bilayer system 

consisting of 2DEG layer, may be regarded as being in 

the Boltzmann regime. The investigations for a dielectric 

environment make the study of coulomb drag phenomena 

special. As the results are in good agreement compare to 

the system of a simple coupled layer. We wrote down the 

formulas to explain such a system’s the transresistivity at 

low temperatures and high density dependence using 

RPA method [46,47]. We have shown that the drag 

resistivity should always act as 𝑇2 in low-temperature 

𝑇𝐹 ≫ 𝑇, 𝑑−4 in large inter layer separation 𝑞𝑑 ≫ 1 and 

high density limit, 𝑘𝐹𝑑 ≫ 1 [61]. Hence, it is more 
common outcome as others. The general expression 

evaluated for the non-interacting susceptibility function 

is central to this fact, in the low temperature and low 

frequency regime which covers the temperature 

dependency of resistivity in transport phenomena. 
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