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Introduction 

Bamboo is a monocotyledonous plant and a true grass 

Poaceae which is widely used in various traditional and 

industrial applications (http://nbm.nic.in/Achievement/ 

Handbook%20on%20Bamboo.pdf) as well as utilized to 

design robust structures [1]. It resembles a typical fibre 

reinforced composite where the fibre bundles are 

reinforced in parenchymatous matrix tissue (see, Fig. 1). 

Moreover, in bulk bamboo, the density or volume fraction 

of the fibre bundles continuously varies from 22% at inner 

periphery to 62% at the outer. It has been shown that the 

variation of the longitudinal stiffness closely correlates 

with the variation in the fibre bundle density [2]. The 

microfibrils are arranged in spiral fashion in the matrix. 

The average orientation of the microfibrils about the 

longitudinal axis which is known as mean microfibril 

angle (MFA) is one of the key parameters governing the 

longitudinal stiffness of bulk bamboo. The particular 

arrangement of fibre bundles on cross-section (see, Fig. 

1(b)) makes bulk bamboo a transversely isotropic 

material. 

 It has been found that the longitudinal Young’s 

modulus and strength of bamboo are linearly increased 

from the inner to outer side [3]. Bamboo, in particular, the 

species Dendrocalamus strictus, has an average Young’s 

modulus of 10 GPa [2]. This qualifies bamboo a superior 

structural material. The Young’s modulus for other 

common species is of the same order. For example, the 

mechanical stiffness and strength of bulk bamboo, for 

species Phyllostachys edulis and Phyllostachys pubescens, 

have been exhaustively worked upon in the former [4] and 

in the latter [5]. Mechanical properties of bamboo 

internodes are transversely isotropic due to axial 

alignment of fibre bundles. However, in nodes, the fibre 

bundles are randomly distributed, thereby producing 

isotropic properties. 

 
Fig. 1. (a) Longitudinal section of bamboo. (b) Section A-A showing 

graded distribution of fibre bundles, denser at the outer radial location of 

bamboo. 

 Fibre bundle is the basic stiffening element of 

bamboo [6]; which indicates that most of the mechanical 

properties of bamboo are directly derived from the fibres’ 

properties and fibre strength distribution, as well [7]. It has 

been observed that typical bamboo fibres are brittle [8] 

and to study the brittle fracture of fibres, conventional 

theory has been used. Recently, a statistical weakest link 

theory is introduced which assumes that a material is made 

of small elements which are linked together and it can be 

mailto:mannan.sayyad@viit.ac.in
http://nbm.nic.in/Achievement/%20Handbook%20on%20Bamboo.pdf
http://nbm.nic.in/Achievement/%20Handbook%20on%20Bamboo.pdf


  

 
divided into its elements. Further, it is assumed that the 

fracture initiates at the weakest link and failure of the 

material occurs [9]. 

 Bamboo fibre bundles are not uniform in size and 

shape (see, Fig. 1(b)). Moreover, fibres within the bundles 

are of different sizes, length varying between 1 mm to 5 

mm (average 2.8 mm) and diameter 14 μm to 27 μm 

(average 20 μm) [6]. Due to the randomness of this extent, 

the strength of fibre bundle and bulk bamboo in turn, is no 

more uniform. Hence, in addition to fibre length and 

diameter, the strength of bulk bamboo depends on the 

distribution of defects within the fibre. 

 There have been many attempts trying to predict the 

fibre strength.  The optimisation of New Zealand grown 

hemp fibre has been investigated for inclusion in 

composite using Weibull distribution function obtained for 

single fibre strength [10]. In another work, the causes of 

discrepancies in statistical strength distribution of 

commercial E-glass fibres have been studied [11]. In 

multiple data set (MDS) weak-link scaling, jute fibres in 

tension have been analysed and predicted better 

correlation with the experimental data [12]. 

 Weibull probability distribution has been commonly 

used in hazard, survival or reliability studies [13]. It has 

been shown that the tensile strength of natural fibre bundle 

is very well predicted in Weibull probability distribution. 

This probability distribution has been shown to be 

improved by including the normalised length or volume of 

each fibre [14]. In a separate work, both strength and 

elasticity modulus are described using the same Weibull 

probability distribution [15]. 

 As far as bamboo is concerned, it is clear from the 

results of above studies that the Weibull probability 

statistics can be also be used to represent the properties of 

the single bamboo fibre bundles. A progressive failure 

model for bamboo fibre bundles has been implemented to 

determine the minimum size of cross-section of fibre 

bundle for mapping an average mechanical response [16]. 

Although, all of these studies clearly justify the 

implementation of Weibull statistics and predict behaviour 

of single fibre bundle, the overall behaviour of bulk 

bamboo is not well established. 

 It is intuitive, within the framework of Weibull 

statistics, to predict the failure strength of bulk bamboo in 

uniaxial tension. In this work, for determining statistical 

parameters, tension tests are performed on fibre bundles 

having different cross-section areas, selected from 

different fibre density regions in the transverse cross-

section of bamboo. The statistical results are then 

compared with the experimental results of uniaxial tension 

of bulk bamboo. 

 The paper is organised in the following manner. The 

experimental procedure is discussed in Sec. 2. Statistical 

distribution on the properties of bamboo fibre bundles is 

derived making use of Weibull statistics [17] in Sec. 3. In 

Sec. 4, statistical modelling of mechanical response of the 

fibre bundle is deduced. The representative tensile 

behaviour of bulk bamboo is discussed in Sec. 5. The 

results are discussed in Sec. 6. The paper is concluded in 

Sec. 7 with findings of the Weibull statistics. 

Experimental details 

For the experiments on bamboo fibre bundles reported in 

this study, a bamboo culm of local variety was obtained 

from the botanical nursery of IIT Kanpur. It was kept 

under roof for natural seasoning to ensure it to be free 

from moisture. One internode was selected for making 

tensile specimens. For experiments, two kinds of 

specimens were prepared from this internode. 

 The first set of specimens as shown in Fig. 2(a) was 

prepared for uniaxial tensile test on fibre bundles. 

Following the procedure of chemical extraction for fibre 

bundles of bamboo (reported elsewhere, [2]), 75 fibre 

bundles were selected for the tests1. A bundle contains 

hundreds of fibres whose shape of the cross-section 

depends on the location of fibre bundle in the cross-

section. The bundles further were naturally dried and then 

cut into pieces 26±1 mm in length. For testing, the ends of 

bundles were bonded with epoxy resin with the help of 

hard paper. A micro-tensile stage (Deben MICROTEST, 

UK) with a 300 N load cell was used for tensile tests of 

fibre bundles. 

 

Fig. 2. A bamboo culm showing the test specimens prepared from it. (a) 

Fibre bundle tensile specimen. (b) Tensile specimen obtained from strips 
extracted from transverse cross-section. Note, the dots represent speckle 

pattern used for DIC. Typical force-displacement response obtained from 

tensile tests on fibre bundle and bamboo strips are shown in (c) and (d) 
respectively. 

 

 The second set of specimens (shown in Fig. 2(b))  

was prepared for uniaxial tensile test of bulk bamboo.  

The specimens were prepared following ASTM D143 

recommendations [18] with the length in the longitudinal 

direction and taken out from inner and outer periphery 

over the cross-section. A universal testing machine fitted 

with a 10 kN load cell was used to conduct tension tests 

on bulk bamboo specimens. Digital image correlation 

(DIC) technique along with a commercial software Vic-

2D (Correlated Solutions, USA) for accurate measurement 

of displacements on the bulk specimen surface was used. 

The experiments mentioned in this work are carried out at 

the High Speed Experimental Mechanics Laboratory at IIT 

Kanpur. In all cases, the cross-head speeds were 

maintained at 1 mm/min. Also, to avoid the errors in 

analysis, specimens failed at the clamps were excluded 

__________________________________________________________________________________________________________________________________________________________________________ 

1The procedure laid down in [2] does not produce a single fibre. Hence, the tests were carried out on fibre bundles. 

 



  

 
because such failure does not represent a successful test. 

For the tensile test to be acceptable, the specimen should 

break within gauge length. 

 A typical force-displacement response obtained from 

both the tests is shown in Fig. 2(c) and Fig. 2(d). It is 

apparent from the plots that tensile force monotonously 

increased with strain until the peak force is achieved. At 

this point, the material fails without further yielding. The 

fibre bundle shows typical linear elastic brittle behaviour. 

Later in Sec. 5, we will discuss how tensile behaviour of 

bulk bamboo is predicted from independent fibre bundles. 

Results of the tensile tests on fibre bundles thus 

determined are shown in Table 1, where Ai, 𝜀i
u and 𝜎i

u is 

cross-section area, ultimate strain and strength of 

individual fibre bundle i. 

Table 1. Statistical representation of the results of the tensile tests on 

fibre bundles of bamboo. 

Variable  Minimum Maximum Mean St. dev. Skewness 

(x) Dimension (min(x)) (max(x)) (�̅�) (σ(x)) (γ1(x)) 

Ai (mm2) 0.1238 0.2703 0.1896 0.0433 0.1147 

𝜀i
u (m/m) 0.0267 0.0422 0.035 0.051 -0.1477 

𝜎i
u (N/mm2) 182.7612 805.1227 508.3507 217.1459 -0.2088 

 

Weibull statistics 

It is clear from Fig. 2(c) that bamboo fibres typically 

exhibit brittle failure and have variation in their strength 

which is governed by microstructural defects acting as 

stress raisers. Also, these defects are dispersed or 

distributed randomly along the fibre length. Thus, the 

properties are not able to be described through a 

deterministic model.  The progressive failure of composite 

sandwich beam has been analysed where the authors have 

implemented a material model using maximum stress 

failure criterion [19]. In the present work, this model is not 

suitable as it requires knowledge of all stiffness constants. 

Hence, a probabilistic model like Weibull statistics is 

more suited to these kinds of representations [20]. Weibull 

statistics has been shown to be the best tool for 

characterization of fibre strength having scatter and 

random variation [17, 21]. 

 The classical two-parameter Weibull cumulative 

density function is described by 

                           P(𝑥) = 1 − exp ⌊− (
𝑥

𝛽
)

𝛼

⌋                      (1) 

where x is the variable to be described (𝜀i
u or Ai) and α 

and β are shape and scale parameters respectively. 

However, as the fibre bundle’s strength depends on 

respective cross-sectional area, in the present study, a 

modified Weibull probability distribution [22] is used to 

describe fibre bundle strength σi
u 

                    P(𝜎i
u, 𝐴i) =  1 –  exp [− (

Ai

A0
 

𝜎i
u

𝛽
)

𝛼

]               (2) 

 

where A0 is the average cross section area of the bundle, 

taken as the reference value.  

 The shape and scale parameters (α and β) can be 

obtained by linearising Eq. 1 as 

ln[−ln(1 − P(𝑥)] =  𝛼 ln(𝑥) −  𝛼 ln(𝛽).        (3) 

 The value of the probability P(x) is estimated such 

that the parameters α and β fit experimental data. 

Commonly, these parameters are estimated using 

probability index functions [23]. 

 In the present study, the probability function used is: 

P(𝑥) =
j−0.5

n
                                  (4) 

where j is the rank of the jth data point and n is the number 

of data points. Later, the values of Weibull Parameters α 

and β are obtained from a linear regression of Y = AX + 

B. The algorithm for determining Weibull Parameters α 

and β is reproduced in Appendix A. 

 The exercise mentioned above yields a good fit of the 

probability distribution to cross-section area Ai, ultimate 

strain 𝜀i
u  and strength 𝜎i

u  obtained from experiments on 

fibre bundles. The results of regression analysis are plotted 

in Fig. 3. 

 

 

Fig. 3. (a) Statistical presentation of fiber bundle’s strength expressed as 

a function of cross-section area of the bundle. Weibull fitting curves for 
cross-section area, ultimate strain and strength are shown in (b), (c) and 

(d) respectively. 

Statistical modelling of the tensile behaviour of 

bulk bamboo 

As mentioned in Sec. 1, bulk bamboo is composed of fibre 

bundles embedded in parenchymatous matrix. Each fibre 

bundle in turn is made of closely packed single fibres. The 

tensile behaviour of a fibre bundle (as shown in Fig. 2(c)) 

depicts a typical brittle failure which can be represented 

by a relationship between strength (𝜎i
u) and ultimate strain 

(𝜀i
u). This relationship can be approximated as linear until 

the tensile strength is achieved. Afterwards, the load drops 



  

 
down while strain increases as shown in Fig. 4(a)). Since, 

the tensile behaviour of bamboo predominantly depends 

on the strength of bamboo [2], the contribution of matrix 

is safely neglected. Also, the slip between the fibre 

bundles and matrix is not modelled here. The prediction of 

tensile strength of bulk bamboo can be obtained using a 

progressive failure model of fibre bundles in the bulk 

specimen. We now develop a model based on the mixing 

theory [24] and Weibull probability distribution worked 

out in previous section. It is considered that the strain of 

each fibre bundle 𝜀bulk  is the same and the strength of 

bulk bamboo 𝜎bulk is equal to the sum of the fibre bundle 

strengths weighted with the area fraction ki, that is, 

𝜀bulk = 𝜀1 = 𝜀2 = ⋯ = 𝜀i = ⋯ 𝜀n.                     (5) 

            𝜎bulk = k1𝜎1 = k2𝜎2 = ⋯ = ki𝜎i = ⋯ kn𝜎n.    (6) 

 The shape and the scale parameters of Weibull 

probability distributions are obtained from the 

experimental tensile test of the fibre bundles, as it is 

indicated in Sec. 3 and are summarized in Table 2. Each 

numerical realisation generates a random set of ultimate 

strains 𝜀i
u  and strengths 𝜎i

u  at the failure for each fibre 

bundle i. Combining the progressive failure of all fibre 

bundles, a non-linear response is generated as shown in in 

Fig. 4(b). The procedure followed in this progressive 

model is reproduced in Appendix B. At (i+1)th loading 

step in the failure of bulk specimen, the fibre bundles 1 to 

i are broken, and the fibre bundles (i+1) to n are still 

elastic. 

Table 2. Statistical representation of the results of the tensile tests on 

fibre bundles of bamboo. 

Variable 

(x) 
Dimension A B α β 

Ai (mm2) 5.1438 8.1171 5.1438 0.2064 

𝜀i
u (m/m) 10.5799 34.7595 10.5799 0.0374 

𝜎i
u (N/mm2) 2.78 -17.3390 2.78 511.3906 

 It is noteworthy that there is always a linear 

relationship between the strength and the failure strain but 

there is a difference in mechanical properties which are 

associated with the corresponding Weibull probability 

distribution. To explain it further, a response for 50 fibre 

bundles with Weibull properties derived in this work is 

shown in Fig. 4(c). The plot indicates the effect of the 

Weibull distribution having a wide dispersion in the 

response. 

 
Fig. 4. Stress-strain relationship for (a) fibre bundle and (b) bulk bamboo 

according to the progressive failure model. Mechanical response for 50 

fibre bundles with Weibull properties in Table 2 is shown in (c). 

Representative tensile behaviour of bulk bamboo 

The present study is aimed at predicting the tensile 

behaviour of bulk bamboo which consists of stiff fibre 

bundles embedded in soft parenchymatous matrix. For 

representation of tensile behaviour, the specimens used for 

uni-axial tensile tests as shown in Fig. 2(a) were selected. 

The fibre volume fraction of these specimens was 

calculated to obtain fibre bundle density as 2.0 and 3.8 

bundles/mm2 giving 18 and 34 fibre bundles respectively 

in inner and outer bulk specimens. With the numbers of 

fibre bundles at hand and applying the procedure laid 

down in Appendix B for 10 random realisations, the 

representative tensile behaviour of bulk bamboo is 

predicted. The responses thus obtained are plotted in  

Fig. 5. 

 
Fig. 5. Stress-strain response of bulk specimens obtained from 
experiments for (a) inner specimen with 18 fibre bundles and (b) outer 

specimen with 34 fibre bundles. Corresponding numerical simulations 

for inner and outer specimens are also plotted over the experimental 
results. Note that, numerical results are obtained through 10 random 

realisations. 

Discussion 

The exercise of fitting experimental data reveals the fact 

that a classical two-parameter Weibull probability 

distribution represents the ultimate strain 𝜀i
u and 

corresponding cross-section areas of fibre bundles Ai 

adequately. Also, the tensile strength 𝜎i
u  is well 

represented with modified Weibull distribution. Looking 

at the accuracy and repeatability of the results in the 

material like bamboo, this technique seems to be reliable. 

However, the results obtained here, especially the shape 

and scale parameters α and β, are not of use as a reference 

for describing the properties of any other natural or 

synthetic fibres bundles. The fact that the shape and scale 

parameters α and β used in this work are obtained from 

experiments on one particular bamboo species restricts its 

applicability to other materials. 

 Nevertheless, Weibull statistics is a good way to 

describe the properties of the fibre bundles as the linear-

elastic behaviour of many highly disperse bundles can be 

effectively generated with the shape and scale parameters 

found in this work. As the individual fibre bundle in bulk 

bamboo shows difference in properties and high 

dispersion when tested alone, the overall response of bulk 

bamboo is difficult to predict. However, the effect of 

dispersion in properties loses its effect as the number of 

fibre bundles in the specimen increases. 



  

 

Conclusion 

A local variety of bamboo is studied with a view to 

establish an implementable method of predicting the 

tensile strength of bulk specimen. A classical two-

parameter Weibull statistics is used to fit experimental 

data of the tensile behaviour of fibre bundles. In this work, 

it is shown that 

1. The cross section area and ultimate strain bamboo 

fibre bundles are well represented with the classical 

Weibull statistical function. 

2. The tensile strength with respect to cross sectional 

area is represented on a modified Weibull statistics. 

3. The estimates of tensile strength obtained using 

Weibull probability distribution have been tested 

against experiments on specimens drawn from the 

bulk bamboo. 

4. The results obtained through numerical simulations 

closely match with the experimental results justifies 

the use of Weibull statistics for the present work. 

Appendix A. Weibull parameters determination 

Input arguments: Experimental data x arranged in ascending order, and 
number of data n 

Output arguments: Weibull parameters α and β 

1. for j = 1 to n do 
2. % Probability for each data point 

3. P(j) = (j − 0.5)/n 

4. % Abscissa X for each data point 

5. X(j) = ln x(j) 

6. % Ordinate Y for each data point 

7.  𝑌(j) = ln(−ln (1 − P(j))) 

8. end for 

9. % Linear regression of 𝑌 = 𝐴X + B 

10. (A, B) = LinReg(X(j), Y(j)) 

11. % Weibull parameters 𝛼 and 𝛽 

12. 𝛼 = A 

13. 𝛽 = exp (−B/𝛼) 

 

Appendix B. Procedure of failure model for bulk bamboo 

Input arguments: Weibull shape and scale parameters 𝛽A, 𝛼A, 

𝛽ε, 𝛼ε, 𝛽σ, 𝛼σ for number of data n 

Output: Tensile behaviour of bulk bamboo for realisations m 

1. % Randomise properties of each fibre bundle 
2. for j = 1 to n do 

3. 𝐴i: wblrand( 𝛽A, 𝛼A) 

4. 𝜀i
u: wblrand(𝛽ε, 𝛼ε) 

5. 𝜎i
u: wblrand(𝛽σ, 𝛼σ) 

6. 𝐸i = 𝜎i
u 𝜀i

u⁄  

7. end for 

8. % Calculate overall cross-section area of the bulk specimen 

9. A(s) = ∑ 𝐴i 

10. % Obtain volume fraction for each fibre bundle 

11. for j = 1 to n do 

12. ki = Ai A(s)⁄  

13. end for 

14. % Sort ultimate strain of the fibre bundles in ascending order 

15. 𝜀1
u < 𝜀2

u < ⋯ < 𝜀n
u 

16. % Determine the bulk specimen strength related to each fibre 

bundle failure 

17. for j = 1 to n do 
18. % Bulk specimen ultimate strain is equal to the ultimate strain of 

fibre bundle 

19. 𝜀1
(s)

= 𝜀i
u                

20. %Secant modulus of the bulk specimen 

21. E(sec)i
(s)

= ∑ kj ∗ Ej
n
j=1  

22. Determine the strength of bulk bamboo 

23.   𝜎i
(s)

= E(sec)i
(s)

∗ 𝜀i
(s)

 

24. % Set rigidity of fibre bundle i to zero at break 

25. Ei = 0 

26. end for 
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