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Introduction 

The advanced assessment of mechanical fracture 

properties is of primary importance for subsequent 

numerical simulations of components/structures made of 

fiber-reinforced concrete (FRC). A key aspect when 

performing nonlinear fracture mechanics modeling is 

certainly the available knowledge about the tensile 

softening model and its parameters, as well as the 

corresponding fracture energy which dissipates during the 

cracking process, as was emphasized, e.g. in [1, 2].  

 The variability of experimental results obtained using 

specimens made of quasi-brittle materials such as FRC is 

relatively high due to the natural heterogeneity of the 

material. This means that the assessment of its mechanical 

fracture parameters is much more difficult and 

problematic than would otherwise be so. It is not sufficient 

to merely remain at the deterministic level when designing 

or assessing structures made of this material, and indeed 

this can even be risky. Therefore, it is highly 

recommended that the statistical assessment of 

experimental measurements be employed together with 

stochastic nonlinear simulation and a probabilistic 

approach to structural design.  

 The aim of the performed research is to deepen 

existing knowledge about the behavior of the studied FRC 

material especially in relation to its resistance to crack 

propagation. The obtained knowledge is a prerequisite for 

the efficient design and nonlinear computational 

simulation of this composite and the subsequent expansion 

of its applicability in order to increase the sustainability of 

constructed elements, structures and buildings.  

 The research consists of several parts: First, a suitable 

constitutive law for FRC cementitious composites was 

developed within ATENA nonlinear fracture mechanics 

software [3]. The computational model was verified using 

experimental data provided by the Malaysian company 

DURA Technology Sdn Bhd. Second, sensitivity analysis 

was performed. It showed the importance of individual 

material model parameters related to the response of 

specimens tested under laboratory conditions in the four-

point bending test configuration. With the help of the 

sensitivity analysis results, software for the identification 

of material parameters was developed. This program, 

which is called FRCID-4PB, implements the inverse 

analysis method based on an artificial neural network 

(ANN) [4, 5] in combination with efficient statistical 

simulation [6]. 

 The last step was the verification of the software and 

the implemented neural network by means of the 

comparison of identified material model parameters, and 

also via the comparison of structural responses obtained 

for both the original and identified input parameters.  The 

proposed methodology and software are based on 

experimental and computational methods falling within 

the field of fracture mechanics, soft computing and 

reliability theory. 

 There are several recent applications of ANN for 

fiber-reinforced composites or general engineered 

cementitious materials. For example, in [7], selected 

properties of engineered cementitious composites were 

predicted using an ANN which had been trained using 

data collected from the literature. Another practical 

example can be found in [8], where an ANN was 
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employed for the prediction of tensile and compressive 

strengths at 28 days of hardening. The ANN was trained 

using experimental data for hundreds of different 

mixtures. In the above-mentioned references, the ANNs 

are utilized as regression models for the prediction of 

properties based on experimental data. On the other hand, 

the utilization of the ANN in this paper is quite different, 

and is uniquely for cementitious composites. Here, 

selected material parameters of FRC are identified based 

on inverse analysis and the virtual simulation of a fracture 

test. The ANN is used here as a surrogate model 

describing the inverse relationship between structural 

response parameters and material parameters.   

 

Fig. 1. Schematic view and dimensions of an unnotched specimen tested 
in the four-point bending configuration. 

Computational model 

Mechanical fracture parameter values are determined 

using the results of fracture tests in suitable test 

configurations. In the case of FRC, four-point bending 

(4PB) tests on unnotched prism specimens are widely used 

(Fig. 1). The outcome of each test is a force–deflection 

diagram (F–d diagram, Fig. 2), which is subsequently 

used as input data for mechanical fracture parameter 

identification (which is an inverse task). Nonlinear 

numerical simulations of such four-point bending beam 

tests were performed using ATENA FEM software [3], 

[9]. This software enables the response of the structural 

member to be calculated, including material damage. 

 

Fig. 2. A typical force vs. midspan deflection diagram obtained from a 
four-point bending test performed on a fiber-reinforced concrete 

specimen. 

 The constitutive law at each point in the material 

plays a crucial role in nonlinear numerical analysis. The 

realism of the structural response, damage and failure 

calculated by the computational model depends strongly 

on the quality of the material model, which determines the 

exactness and accuracy of the achieved results. Since FRC 

is a rather complex heterogeneous material with a strongly 

nonlinear response, the “3D Nonlinear Cementitious 2 

User” material model was utilized for the realistic 

modeling of this composite. It can capture all the 

important aspects of the FRC material’s behavior and 

response under tensile as well as compressive loading. 

 Concrete in tension is described within the smeared 

crack concept by the nonlinear fracture mechanics with 

crack band approach. The main material model  

parameters are tensile strength and the shape of the 

softening function, which characterizes the crack mouth 

opening in relation to the remaining tensile stress. In the 

model, a real discrete crack is represented as a band of 

localized strains where the strain corresponding to the 

crack width is related to the size, shape and orientation of 

the finite element. The softening function for the material 

law used in the smeared crack concept has to be 

determined for every point in the material (or finite 

element) in such a way that the objective crack opening 

law will be preserved. Only such an approach based on an 

energy-related formulation assures an objective solution 

independent of the finite element mesh [3].  

 In the case of fiber-reinforced composite, in order for 

a softening function to be appropriate it must reflect all the 

typical aspects of FRC cracking. The proposed function 

for the optimal reproduction of the tensile softening of the 

investigated composite material is shown in Fig. 3. The 

form of the function is described by tensile strength and 

four additional parameters, C1 to C4. Its form attempts to 

capture all the particular stages of damage to the FRC 

material, such as the reaching of ultimate strength by the 

cement matrix (see the point in Fig. 3 where stress reaches 

ft), the delayed activation of the fibers within the 

composite (see parameter C1), and the consequent 

stiffening of the composite with activated fibers after the 

bearing capacity of the matrix is exhausted (see the 

stiffening part of the diagram until the strain reaches the 

C2 value).  

 

 

Fig. 3. Stress–strain law utilized for the fiber-reinforced concrete 
material. 

  Concrete in compression exhibits a strong 

confinement effect – i.e. an increase in the compressive 

strength under a concentrated three-dimensional 

compressive stress state. This effect is covered by the 

special plasticity theory with a non-associated plastic flow 

law in the combined fracture-plastic models in ATENA 

[9]. The compressive ductility of FRC should be 

appropriately accounted for in the material model as well. 

Stress-strain law 



  

 
Sensitivity analysis  

A parametric study was performed in order to understand 

the effect of the individual material parameters on the 

beam response in the four-point bending test. The aim was 

to identify the parameters which can be termed dominant, 

along with those that do not influence the response and 

thus can be excluded from the inverse analysis. An 

additional aim was to determine the real ranges of the 

dominant parameters and propose a suitable set of 

response parameters that will be used as inputs for the 

inverse analysis. 

 The parametric study was performed step by step for 

six model parameters – tensile strength, compressive 

strength and four parameters of the tensile softening 

model, C1 to C4. The value of each parameter was 

gradually changed. This was always in four steps (with the 

exception of compressive strength, where only two steps 

were considered), while the remaining parameters always 

remained unchanged at their default values. One of the 

cases always corresponded to the default set of parameters 

– marked with the abbreviation "ini" in the figures below. 

The resulting F–d diagrams are shown in Fig. 4.  

 
Fig. 4. Four-point bending test simulation for various values of tensile 
strength (top left), compressive strength (top right), parameter C1 (middle 

left), parameter C2 (middle right), parameter C3 (bottom left), and 

parameter C4 (bottom right). 

 The following conclusions can be drawn from the 

parametric study results: 

 Tensile strength is one of the dominant parameters. 

Increasing its value leads to increased resistance across 

the entire load spectrum. 

 Compressive strength, on the other hand, is one of the 

parameters that have no effect on the resulting 

response when the sample is loaded in four-point 

bending. Therefore, this parameter will not be included 

during identification and will be considered at its 

default value. 

 Parameter C1, which is related to the delayed activation 

of fibers in the cement matrix, is expected to have the 

greatest influence on the shape of the diagram when 

the cement matrix capacity is exhausted. Its size 

controls the "depth" of the first drop in the curve. 

 Parameter C2 does not affect the initial part of the 

diagram, but affects the amount of deformation when 

the ultimate bearing capacity of the specimen is 

reached. 

 Parameter C3 is also closely related to the ultimate 

bearing capacity of the sample, but this time it mainly 

influences the ultimate force and slope of the second 

part of the diagram, when it is strengthened due to the 

joint action of the matrix and the fibers. 

 Parameter C4 influences the maximum deformation 

that will be achieved during the test. When C4 has a 

low value, the numerical test is terminated at a low 

deflection value. 

For the purposes of inverse analysis, we can conclude: 

 Due to the clear effect of parameter C1 on the first 

visible decrease in the F–d diagram when reaching the 

ultimate bearing capacity of the cement matrix, it is 

possible to exclude it from the identification process 

and consider it to have a constant value of C1 = 0.8. In 

the case of any future need to identify samples with a 

significantly “deeper” first drop in the diagram, 

parameter C1 may be included in identification. 

 Another parameter whose value can be considered 

constant and thus can be excluded from identification 

is C4. Its initial value C4 = 0.1 is large enough to obtain 

the required deformation, which corresponds to the 

ductility of the material. 

 The last parameter that will not be employed in the 

identification process is compressive strength. Its 

effect on the bending response is negligible. 

 The identification set thus contains four material model 

parameters – tensile strength, C2 and C3, and the 

modulus of elasticity, whose influence on the slope of 

the initial linear part of the diagram is well known.  

Methodology and software implementation 

An artificial intelligence-based inverse procedure 

developed by Novák and Lehký [4] is able to transform 

fracture test response data into a set of desired mechanical 

fracture parameters. This approach is based on matching 

laboratory measurements with the results gained by 

reproducing the same test numerically. The ANN is used 

here as a surrogate model of an unknown inverse function 

between the input mechanical fracture parameters P and 

the corresponding response parameters R: 

𝐏 = 𝑓ANN
−1 (𝐑)                       (1) 

 As described in the previous section, the identification 

set of parameters P contains four material model 

parameters – tensile strength, C2 and C3, and the  

modulus of elasticity. With respect to the results of the 



  

 
sensitivity analysis, the following four response 

parameters were selected for the response set R: force 

value Fe from the linear elastic part of the force vs. 

midspan deflection diagram, force value Fmat when 

reaching the ultimate bearing capacity of the cement 

matrix, force value Fmax when reaching the ultimate 

bearing capacity of the whole specimen, and the 

corresponding deflection value dmax. 

 The cornerstone of inverse analysis is an artificial 

neural network, which is of the feed-forward multilayer 

type [10]. The most important step in the whole procedure 

is the creation of the network and its training – the 

adjustment of its synaptic weights and biases. The set for 

training the ANN is prepared numerically via the 

utilization of an FEM model using a stress-strain law, as 

shown in Fig. 3. It simulates 4PB testing with random 

realizations of material parameters. These are generated 

with the help of the stratified sampling method (LHS) and 

by performing an inverse transformation of the 

distribution function in order to reflect the probability 

distribution of the parameter. 

 The random responses obtained from the 

computational model and the corresponding random 

realizations of parameters serve as input–output elements 

of the ANN training set. After training, the ANN is ready 

to solve the main task, which is to provide the best 

material parameters in order for the numerical simulation 

to achieve the best agreement with the experiment. This is 

performed by simulating a network using the previously 

measured responses as an input, resulting in a set of 

identified material parameters. The last step is result 

verification – the calculation of the computational model 

using the identified parameters. Comparison with the 

experiment will show the extent to which the inverse 

analysis was successful. More theoretical backgrounds and 

a detailed description can be found in [4]. 

 Note that the importance of training sample 

preparation was previously emphasized and tested by 

Tong and Liu [11], including the LHS scheme. In spite of 

the fact that these authors concluded that number-theoretic 

methods appear to be the most efficient, the LHS scheme 

also provided very good results. Moreover, our focus on 

LHS is also determined by the general applicability of this 

small-sample simulation technique for practical statistical, 

sensitivity and reliability analyses in many fields of 

engineering. 

 The above-described method of parameter 

identification, which combines nonlinear simulations with 

the training of an artificial neural network, is relatively 

time consuming and of high complexity. Therefore, the 

whole procedure was implemented in FraMePID-3PB 

software [5] and successfully used for the material 

parameter identification of plain concrete. The software 

has now been modified and updated for fiber-reinforced 

concrete, including the tensile softening model, as 

described in the section on the computational model. A 

screenshot of the first version of FRCID-4PB software is 

shown in Fig. 5. 

 

Fig. 5. FRCID-4PB software: loading of experimental data and 

evaluation of input parameters for identification. 

Results of identification  

Initial verification of the software and implemented neural 

network was performed using a set of five randomly 

simulated sample responses loaded in the four-point 

bending configuration. The structural response 

corresponds to the behavior of the Dura composite. Based 

on the sensitivity analysis presented above, four 

parameters of the material model were the subject of 

identification – modulus of elasticity, tensile strength, C2, 

and C3; see Fig. 3. Because the input set of material 

parameters was available, it was possible to compare their 

values directly with the values obtained via identification.  

 A graphical comparison of all five test samples is 

shown in Fig. 6. Furthermore, a comparison of the 

resulting sample responses in the form of force–

displacement diagrams is depicted in Fig. 7. The results 

show very good agreement between the original and 

identified data. Parameter C2 seems to provide the least 

accurate identification; its sensitivity is relatively low 

compared to that of other parameters. This discrepancy did 

not have any significant effect on the identified force–

displacement diagrams, as shown in Fig. 7.  
 

 

Fig. 6. Validation of identified parameters: original vs. identified 

material model parameters. 



  

 

   

 
Fig. 7. Verification of identified parameters: comparison of original vs. 

simulated structural response for five selected samples. 

 When comparing experimental and numerical force–

displacement diagrams for all tested specimens one can 

see a very good fit of curves along the whole loading path. 

In particular, the initial elastic parts, the first drops related 

to the delayed activation of fibers and the forces when 

reaching the ultimate bearing capacities of specimens are 

in perfect agreement. Just a small discrepancy can be seen 

for sample No. 2, where the numerical simulation exhibits 

a slightly higher stiffness for the composite with activated 

fibers compared to the experiment. This discrepancy is 

probably related to some numerical instability which 

occasionally occurs when performing global nonlinear 

analysis. 

Conclusion  

The paper describes a methodology and software tool 

which can be routinely used for the indirect determination 

of the fracture–mechanical parameters of fiber-reinforced 

concrete based on data recorded during four-point bending 

tests on unnotched prismatic specimens. The user-friendly 

software consists of a predefined and trained artificial 

neural network for the fast identification of material 

parameters. The whole concept is based on a combination 

of the statistical simulation method, finite element 

modeling and artificial neural networks.  

 The methodology and software tool were verified 

using data from the Malaysian technology company 

DURA Sdn Bhd. The main conclusions which can be 

drawn from the sensitivity analysis and subsequent 

identifications are: 

 The proposed stress–strain law utilized for the FRC 

material reflects all the typical aspects of its cracking. 

 The dominant material parameters for the description 

of material behavior when subjected to four-point 

bending are modulus of elasticity E, tensile strength 

of cement matrix ft, and four parameters of the tensile 

softening model, C1–C4. For the tested DURA 

composite, parameters C1 and C4 can be adjusted 

directly from the experimental load vs. deflection 

diagram, while the remaining four parameters are the 

subject of identification. 

 Note that the tensile strength of the cement matrix of 

fiber-reinforced composite is determined via inverse 

analysis too. Such separation is quite unique for 

mixtures such as FRC, which are composed of several 

constituents. 

 With respect to the parameters to be identified, four 

suitable response parameters were selected as the 

input for inverse analysis.  

 The presented validation results show outcomes from 

sensitivity analysis used as a supporting tool for the 

development and proper set-up of an artificial neural 

network and its components.  

 The subsequent performance of parameter 

identification on tested FRC samples proved the 

ANN’s efficiency and ability to identify material 

parameter values leading to the accurate simulation of 

the response of the studied composite.  
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