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Introduction 

Miyaska, et al., [1] appear to be essentially the first to 

present evidence of a thermodynamic influence on the 

percolation threshold in electrical conductivity 

measurements with carbon fillers as indicated in Fig. 1 

and Fig. 2. The polymers used in Fig. 1 and Fig. 2 were: 

LPE – Linear Polyethylene, PP – Polypropylene, BPE – 

Branched Polyethylene, PS – Polystyrene, Nylon 6, 

PMMA – Polymethelmethacrylate, NR – Natural Rubber 

and SBR – Styrene-Butadiene Rubber.   As indicated in 

Fig. 2 the surface tension of the polymers were shown to 

have a significant relationship with the percolation 

threshold concentration as indicated in Fig. 1. 

                  
Fig.1. Electrical Conductivity of Carbon Filled Polymer Composites as a 

Function of Volume Fraction Carbon (is in -1 cm-2) (From Miyaska,  

et al., [1] with permission). 

 
Fig. 2. Plot of the Critical Carbon Content vs Surface Tension of the 

Polymer (From Miyaska, et al., [1] with permission). 

 
 Several review authors [2-11] have found that many 

models have been proposed to characterize the percolation 

threshold as indicated by the sharp increase in the S 

shaped curves described adequately with the data of 

Miyaska et al., [1] for several carbon filled composites as 

indicated in Fig. 1.   

 Lux [12] points out that in general there appear to be 

predominantly three different types of models to describe 

the percolation threshold including: 

1. Models describing the concentration curve up to the 

percolation threshold. These models generally attempt 

to describe the concentration up to where the 

percolation   threshold just begins. 
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2. Other models describe the concentration curve from 

the percolation threshold and upward from the 

concentration at the percolation threshold. 

3. In addition, there have been some attempts to describe 

the whole concentration curve. However, many of 

these models often have separate models for the 

region up to the percolation threshold and another for 

the region above the percolation threshold. 

 In addition, there appear to be primarily two different 

types of models that cover the whole concentration range 

for the S-Shaped curves found in trying to analyze the 

electrical conductivity of carbon filled composites.  These 

classes include:  

1. Models that appear to address the whole 

concentration range.  

2. Models that actually do cover the whole concentration 

range.  

 For example the percolation threshold model 

developed by Clingerman [13,14] appears to address the 

whole concentration range as indicated in Fig. 3. The 

model indicated in Fig. 3 was a modification of an earlier 

model developed by Mamunya, et al., [15,16]. The model 

developed by Clingerman [13,14] can be described as 

follows: 

  /p )= (F/p)G()                      (1) 

Note that equation (1) can also be rewritten as 

 Log  – Log p = (Log F – Log p)G()             (2) 

where  

 G() = [(-c)/( F-c )]k()                      (3) 

 k( ) = Kc /(-c)n                             (4) 

p = Conductivity of neat polymer   

F = The maximum conductivity in the case of ultimate 

filling when   = F    

c = Conductivity of the mixture at the percolation 

threshold where  = c   

F = Maximum packing fraction of the filler 

 = Volume fraction of filler 

c = Volume fraction of filler at the percolation threshold 

n = An exponent determining the power of conductivity 

increase = 0.70 

 K = A + Bpf                     (5) 

A & B = Constants 
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Fig. 3. Clingerman’s Model addressing Clingerman’s Electrical   

Conductivity Data [13] for a Pitch Based Carbon Fiber in Nylon 6,6 
(with Permission). 

 Clingerman also used a modification of Fowkes [17] 

equation to evaluate the value for the interfacial surface 

tension, pf, as  

 pf =  p +  f  - 2(p
pf

p )0.5 - 2(p
df

d )0.5         (6) 

where 

p = Polymer surface tension  

f =  Filler surface tension 

pf =  Interfacial surface tension 

p
d = Dispersive component of the polymer surface tension 

f
d = Dispersive component of the filler surface tension 

p
p = Polar component of the polymer surface tension 

f
p = Polar component of the filler surface tension  

 The results in Fig. 3 were generated from the data in 

Clingerman’s thesis [13] for blends of carbon fiber in 

nylon 6,6. The information utilized from this thesis to 

generate this plot were as follows Log(F/p= 12.386,  

PF = 6.39, K = 0.11 + 0.03PF =  0.302 , c = 0.09 and  

F - c =  0.132 – 0.09 = 0.042. 

 In general, the results in Fig. 3 do appear to describe 

the data satisfactorily. However, note the following sub-

equation, E() , from  equation (4)  

E() = (-c)n                                                   (7) 

 If  < c then E() is defined if n is an integer.  

However, if n is a fraction (n = 0.70) and  < c   then the 

sign of E() is undefined and the Excel program in the 

computer simply describes the complete calculation as a 

zero.  Therefore, equation (4) becomes undefined below 

the volume fraction of the percolation threshold even 

though the plot in Fig. 3 appears to be acceptable. 

 However, the Original Landauer Model [18] and the 

Landauer model modified by this author do effectively 

define S-shaped curves where the whole concentration 

curves are well defined for electrical conductivity 

measurements as indicated in Fig. 4. The electrical 

conductivity data in Figure 4 are also from Clingerman’s 

thesis [13] for blends of carbon fiber in nylon 6,6.  Since it 

is clear that the Original Landauer model [18] as indicated 

in Fig. 4 did not effectively fit the electrical conductivity 

data in this instance, it was been dropped from further 

consideration in this study. 
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Fig. 4. Clingerman’s Electrical Conductivity Data [13] for Pitch Based 

Carbon Fiber in Nylon 6,6 applied to the Modified Landauer Model and 

the Original Landauer Model (with Permission). 



  

 
 Another model that also addresses the whole 

concentration range for electrical conductivity 

measurements is the Sudduth Percolation Threshold  

model [2] as indicated in Fig. 5.  Note that the model in 

Fig. 5 also yielded an excellent fit of Clingerman’s 

electrical conductivity data for blends of carbon fiber in 

nylon 6,6. 
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Fig. 5. Sudduth Percolation Threshold Model addressing Clingerman’s 

Electrical Conductivity Data [13] for a Pitch Based Carbon Fiber in 

Nylon 6,6 (with Permission). 

 
 The next sections of this study will utilize both the 

Sudduth Percolation Threshold Model and the Sudduth 

Modified Landauer Model to characterize data from three 

different carbon fillers in both Nylon 6,6 and Lexan.  

These results will then be used to identify how best to 

characterize the interfacial surface energy, pf, for 

composite electrical conduction measurements using the 

data from Clingerman’s thesis [13]. 

Analysis utilizing the Sudduth Modified Landauer 

Percolation Threshold Model 

Landauer's [18] original percolation threshold model has 

been modified by this author to yield the following new 

version of this model: 

p  
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 p

1  [ + (2 +fp)1/2]           (8) 

 ()f + [(1-) -1]p                       (9) 

where 

 = Conductivity of composite at volume fraction  

p = Conductivity of the base polymer or matrix  

f = Conductivity of the filler particles 

 = Volume fraction of filler 

 = Constant  

 =  Constant  

 = Constant   

 = Efficiency of the filler  

 =  Intermediate function of  , p , f  

 The additional constants added to the Landauer model 

to obtain the Sudduth modified Landauer model were 

generated by simply making the numbers in the original 

Landauer model to be constants. Consequently, the 

original Landauer model can be obtained from the 

Sudduth modified Landauer model when  = 4.0,  = 8.0, 

 = 3.0 and  =1.0.  It should be noted that the special 

limits of the Orginal Landauer model ( = 4.0,  = 8.0,  

 = 3.0,  = 1.0) would include:   when  = 0 then  p 

and when  = 1 then  f.   
 The results in Figs. 6-8 have been generated utilizing 

the Modified Landauer model to address Clingerman’s 

electrical conductivity data. In Fig. 6 Clingerman’s data 

for a carbon black Ketjenblack EC-600JD in both Nylon 

6,6 and Lexan has been addressed. In Fig. 7 Clingerman’s 

data for a pitch based carbon fiber Thermograph DKD X 

in both Nylon 6,6 and Lexan has been addressed. And 

finally, in Fig. 8 Clingerman’s data for specialty graphite 

Thermocarb TM CF-300 in Nylon 6,6 and Lexan has been 

addressed.  
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Fig. 6. Modified Landauer Model addressing Clingerman’s Electrical 

Conductivity Data [13] for a Carbon Black in Nylon 6,6 and Lexan (with 
Permission). 
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Fig. 7. Modified Landauer Model addressing Clingerman’s Electrical 
Conductivity Data [13] for a Pitch Based Carbon Fiber in Nylon 6,6 and 

Lexan (with Permission). 
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Table 1. Modified Landauer Model Calculation Results for Carbon Fillers in Nylon 6,6 and Lexan (Using the Data of Clingerman 

[13] with Permission). 

Carbon Black 

in Nylon 6,6  

Ketjenblack       

EC-600JD

Carbon Black 

in Lexan  

Ketjenblack       

EC-600JD

Pitch Based 

Carbon Fiber 

in Nylon 6,6  

Thermograph 

DKD X

Pitch Based 

Carbon Fiber 

in Lexan  

Thermograph 

DKD X

Specialty 

Graphite in 

Nylon 6,6  

Thermocarb 

TM CF-300

Specialty 

Graphite in 

Lexan  

Thermocarb 

TM CF-300

Modified 

Landauer      

PT Model

Modified 

Landauer      

PT Model

Modified 

Landauer      

PT Model

Modified 

Landauer      

PT Model

Modified 

Landauer      

PT Model

Modified 

Landauer      

PT Model

 Constant, 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000

 Constant, 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

 Constant, 28.0000 28.0000 8.5000 8.5000 7.5000 7.5000

 Efficiency Constant,  3.00E-01 4.00E-03 3.75E-05 4.69E-05 2.00E-08 1.00E-07

 Ratio  1/ 0.0357 0.0357 0.1176 0.1176 0.1333 0.1333

 Percolation Threshold, ciMax
0.0356 0.0356 0.1172 0.1172 0.1310 0.1310

 Inflection Point, iP
0.0357 0.0357 0.1176 0.1176 0.1330 0.1330

 Maximum Conductivity, max
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 Conductivity Ratio, f / p
1.4383E+18 1.4300E+19 3.0891E+19 3.0477E+20 1.4502E+21 1.4299E+22

  Ln ( f / p ) 41.81 44.11 44.88 47.17 48.73 51.01

 

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Volume Fraction Filler

L
N

( 
/ 

p
)

Sudduth-Landauer Nylon Alpha =4, Beta =8., Delta = 7.5, Epsilon= 2.E-07

Sudduth-Landauer Lexan Alpha =4., Beta =6., Delta = 7.5, Epsilon = 1.E-07

Clingermans Conductivity Data (Specialty Graphite in Nylon 6,6)

Clingermans Conductivity Data (Specialty Graphite in Lexan)

Inflection Point Nylon = 0.133

Inflection Point  Lexan = 0.133

 

 p  














 p

1
 [ + (2 +fp)

1/2]     

  ()f + [(1-) -1]p   

 
Fig. 8. Modified Landauer Model addressing Clingerman’s Electrical 

Conductivity Data [13] for a Specialty Graphite in Nylon 6,6 and Lexan 
(with Permission). 

 A summary of the results in Fig. 6-8 are shown in 

Table 1. The results in this Table yielded the following 

observations for the Modified Landauer Model: 

 The value of  was found to be the same for each 

carbon filler independent of whether the polymer used 

was Nylon 6,6 or Lexan 

 The concentration at the inflection point, ip,  and 

extrapolated percolation threshold concentration, 

ciMax, both approach a value of    1/ as the ratios 

of  f /p increase when ( = 4.0,  = 8.0).  

 The equation constants and calculated results that 

increased in going from the carbon black to the 

specialty graphite in both Nylon 6,6 and Lexan 

included: 

o 1/ = Conductivity Percolation Threshold Upper 

Limit 

o ip = Concentration at the inflection Point 

o ciMax = Maximum Percolation Threshold 

Concentration 

o Ln(f/p) = Ln(Maximum possible Conductivity 

Ratio) 

 There is not a well defined maximum where the first 

derivative is equal to zero for the Modified Landauer 

Percolation Threshold Model. 

 Three concurrent mathematical conditions found to 

occur at the same concentration included: the 

concentration at the Inflection Point, ip, the 

concentration at the maximum slope, ip, and the 

maximum extrapolated percolation threshold 

concentration, ciMax, calculated at the same 

concentration,ip.  

 In general, an inflection point must necessarily occur 

in S-shaped curves typically characteristic of electrical 

conductivity measurements of composites for models that 

cover the whole concentration Range. The concentration 

at this inflection point, ip, for these S-shaped curves 

occurs when the second derivative is equal to zero or 

when 





2

p

d

)/Ln(d2 For reference the first and second 

derivatives for the Sudduth Modified Landauer model 

have been generated in Appendix I.   The maximum initial 

slope of the curve will also occur at the same 

concentration as the inflection point. In addition, a line 

through the concentration for the maximum slope also 



  

 
yields the extrapolated maximum percolation threshold 

concentration,ciMax, on the concentration axis. 

  The percolation threshold concentration is typically 

calculated by extrapolating a straight line at the initial 

maximum slope on the S-shaped conductivity curve back 

to the intercept on the concentration axis. As derived in 

Appendix II, the locus of points yielding these possible 

equations for the percolation threshold concentrations, ci, 

are: 

 ci =  - 




d/)/(

)/(

p

p

dLn

Ln                            (10) 

or  

ci =  - 




d/)/(

)/()/(

p

pp

d

Ln                            (11) 

 Since both equations 10 and 11 are equivalent, it was 

found to be more convenient to use equation (11) to plot 

the locus of points for percolation Threshold using the 

Modified Landauer model to obtain the maximum 

percolation threshold concentrations as developed in 

Appendix II. 

 The results in Figs. 6-8 indicate that the Sudduth 

Modified Landauer Model typically does an acceptable 

job of generally fitting Percolation Threshold data for 

electrical conductivity measurements for composites 

Analysis utilizing the Sudduth Percolation Threshold 

Model 

The previously published percolation threshold model 

developed by this author [2] was obtained from a 

refinement of Clingerman’s model and yielded the 

following equation: 

 /p )= (f/p)F()                             (12) 

Equation (12) can then be rewritten as 

 Ln/p ) =  Ln(f /p) F()                (13) 

where  

 F() = 














                  (14) 

Note that several constants in the function G() from 

equations (1)-(4) were redefined as: 

 = n,   = Kc,    = F - c 

 These constants were not only redefined they were 

also given the following new meanings in the new 

percolation threshold model: 

  = Insulation Position Property 

  = Insulation Surface Interaction Magnitude 

  = Conductivity Percolation Threshold Upper Limit 

  = Efficiency of Conductivity Conversion 

 p = Conductivity of the base polymer or matrix 

 f = Conductivity of the base filler 

This new percolation threshold model as indicated in 

Fig. 5 was applied to the same data for the pitch based 

carbon fiber in nylon 6,6 from Clingerman’s thesis (13)  as 

shown previously in Fig. 3.  

 The results in Figs. 9-11 have been generated 

utilizing the Sudduth Percolation Threshold Model to 

address Clingerman’s electrical conductivity data. In  

Fig. 9 Clingerman’s data a carbon black Ketjenblack  

EC-600JD in both Nylon 6,6 and Lexan has been 

addressed. In Fig. 10 Clingerman’s data for a pitch based 

carbon fiber Thermograph DKD X in both Nylon 6,6 and 

Lexan has been addressed. And finally, in Fig. 11 

Clingerman’s data for specialty graphite Thermocarb TM 

CF-300 in Nylon 6,6 and Lexan has been addressed.  
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Fig. 9.   Sudduth Percolation Threshold Model addressing Clingerman’s 
Electrical Conductivity Data [13] for a Carbon Black in Nylon 6,6 and 

Lexan (with Permission). 
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Fig. 10. Sudduth Percolation Threshold Model addressing Clingerman’s 

Electrical Conductivity Data [13] for a Pitch Based Carbon Fiber in 

Nylon 6,6 and Lexan (with Permission). 
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Fig. 11. Sudduth Percolation Threshold Model addressing Clingerman’s 
Electrical Conductivity Data [13] for a Specialty Graphite in Nylon 6,6 

and Lexan (with Permission). 
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Table 2. Sudduth Percolation Threshold Model Calculation Results for Carbon Fillers in Nylon 6,6 and Lexan (Using Clingerman’s 

Data with Permission). 

Carbon Black 

in Nylon 6,6  

Ketjenblack       

EC-600JD

Carbon Black 

in Lexan 

Ketjenblack       

EC-600JD

Pitch Based 

Carbon Fiber 

in Nylon 6,6  

Thermograph 

DKD X

Pitch Based 

Carbon Fiber 

in Lexan  

Thermograph 

DKD X

Specialty 

Graphite in 

Nylon 6,6  

Thermocarb 

TM CF-300

Specialty 

Graphite in 

Lexan  

Thermocarb 

TM CF-300

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

  Insulation Position Property, 1.2200 1.9000 2.0000 2.1000 1.5400 1.5400

  Insulation Surface Interaction Magnitude, 0.0150 0.0022 0.0270 0.0165 0.0750 0.0550

  Conductivity Percolation Threshold Upper Limit, 0.0450 0.0330 0.1590 0.1600 0.3000 0.2900

  Efficiency of Conductivity Conversion,  0.8050 0.6550 0.6400 0.6870 0.7200 0.7200

  Volume Fraction at Percolation Threshold, ciMax
0.0145 0.0183 0.0817 0.0764 0.0985 0.0848

  Volume Fraction at Inflection Point, IP
0.0220 0.0242 0.1078 0.1004 0.1421 0.1232

  Volume Fraction at Maximum Conductivity, max
0.1021 0.0559 0.2621 0.2576 0.5743 0.5551

  Max Conductivity Ratio, f / p
1.4383E+18 1.4300E+19 3.0891E+19 3.0477E+20 1.4502E+21 1.4300E+22

  Ln(Max Conductivity Ratio), Ln ( f / p ) 41.8100 44.1068 44.8770 47.1661 48.7260 51.0145

 A summary of the results in Figs. 9-11 are shown in 

Table 2. The results in this Table yielded the following 

observations for the Sudduth Percolation Threshold 

Model: 

 A well defined concentration at maximum 

conductivity, Max, was found for the Sudduth 

Percolation Threshold Model where the first 

derivative was equal to zero. The concentration at 

maximum conductivity, Max, was found to be nearly 

identical for each carbon filler independent of 

whether the polymer used was Nylon 6,6 or Lexan 

 The concentration at the inflection point, ip,  and 

extrapolated percolation threshold concentration, 

ciMax, both tended to approach a Maximum value of  

   
 The equation constants and calculated results that 

increased in going from the carbon black to the 

specialty graphite in both Nylon 6,6 and Lexan 

included: 

o  = Insulation Surface Interaction Magnitude 

o = Conductivity Percolation Threshold Upper 

Limit 

o ciMax = Maximum Percolation Threshold 

Concentration 

o ip = Concentration at the inflection Point 

o Max = Concentration at Maximum Conductivity  

o Ln(f/p) = Ln(Maximum possible Conductivity 

Ratio) 

 Three concurrent mathematical conditions that 

occurred at the same concentration included: the 

concentration at the Inflection Point, ip, the 

concentration at the maximum slope, ip, and the 

maximum extrapolated percolation threshold 

concentration, ciMax, calculated at the same 

concentration,ip. 

 The volume fraction at the inflection point,ip , in 

Fig. 5 was generated by setting second derivative of 

equation (13) equal to zero. The second derivative of 

equation (13) has been generated in Appendix III as 

indicated by equation (C-6).  The location of the inflection 

point as indicated in the appendix must be solved by trial 

and error using the following equations. 
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
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







 Ln1

                         (16) 

 The volume fraction of the inflection point indicated 

in Fig. 5 has also been included for reference in  

Table 2. The maximum extrapolated percolation threshold 

concentration, ciMax, is also calculated at the volume 

fraction of the inflection point,ip. In general, the 

projected intercept or the projected percolation threshold, 

ci, on the concentration axis has been generated in 

appendix II and yielded the following equation: 

ci =  - 




d/)/(

)/(

p

p

dLn

Ln    B-3 

 Substituting the appropriate values from Appendix III 

into equation B-3 yields 

 ci =   - 
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1

                (17) 

 The results in Fig. 12 were generated using equation 

17 to yield the maximum percolation Threshold volume 

fraction of ciMax = 0.08169 utilizing an analysis of the 

data shown in Fig. 5. The volume fraction for the 

percolation threshold, ciMax, from Fig. 12 has also been 

included in Table 2.  
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Fig. 12. Sudduth Percolation Threshold Plot addressing Clingerman’s 

Electrical Conductivity Data [13] for a Pitch Based Carbon Fiber in 
Nylon 6,6. 

 At this point it is useful to note that F() described by 

equation (14) can also be separated into a conductive 

component and an insulation component. 

           F() = 















                                  (14) 

The conductive component can be described as                                                       

  FConductivity()  = 










                   (18) 

And the insulation component can be described as                                                           

  FInsulation()  = 

  

                   (19) 

 These three functions are plotted in Fig. 13 with the 

constants ,, and  set at the same values as the results 

plotted in Fig. 5. Note in Fig. 13 that the conductivity 

component, FConductivity(), is a straight line with slope 

(1/) that increases linearly with concentration of the filler 

while the insulation component, FInsulation(), decreases 

exponentially with an increase in filler concentration.   

Note that as long as the concentration of filler is less than 

 then the conductivity component will be a fraction less 

than 1. This means that as long as the insulation 

component, FInsulation(),  is a large number as well as an 

exponent for the conductive component, FConductivity(),  

that the combination described as function F() will 

generate a very small number essentially approaching 

zero.  However, once the concentration exceeds the value 

of then the conductivity component, FConductivity(), will 

no longer be a fraction less than 1 and the conductive 

component will continue to increase significantly while 

the insulation component will more rapidly approach zero 

forcing the combination of the two to cause the function 

F() to approach the value of one. 

 Note that the function F() described by equation 

(14) also has several interesting but important limits.  

If  > 0,  > 0 and  > 0 then the function F() has the 

following limits: 

 →    then F() →   0 and /p ) = 1.0 and  = p  (20) 

 =  then F() = 1.0 and Ln/p ) =  Ln(f /p)        (21) 

 = max = e (1/ ) then Fmax () =    


e/
e /1 ≥ 1        (22) 

 →  then F() → 1.0 and Ln/p ) =  Ln(f /p)   (23) 
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Fig. 13. Sudduth F() Model addressing Clingerman’s Electrical 
Conductivity Data [13] for a Pitch Based Carbon Fiber in Nylon 6,6.  

Evaluation of the Predicted Maximum Packing 

Fraction Based on the Shape of Carbon Fillers Using 

the New Percolation Threshold Model 

The volume fraction for which equation (13) yields the 

maximum conductivity can be easily generated from the 

first derivative indicated as equation (C-3) in the 

Appendix III.  Setting this equation to zero and solving 

yields a maximum volume fraction at: 

  max = e (1/ )                                (24) 

 The volume fraction at the maximum, max, calculated 

from the results in Fig. 5 yielded a value of max = 0.2621.  
This volume fraction at the maximum has been included 

in Table 2 along with the other calculated values from  

Fig. 5. 

 The surface to volume ratio of each particle in a 

composite has been identified previously [19,20] to be the 

most important consideration when generating its 

maximum random packing fraction as indicated in Fig. 14 

and Fig. 15. Typically, the larger the surface to volume 

ratio for a particle as described by its “sphericity” as 

indicated in Fig. 14 then the lower the volume fraction for 

the maximum random packing fraction.  Consequently, a 

more general model has been developed [19,20] that 

addresses the random packing fraction of fibers as well as 

discs as shown in Fig. 15 using the “sphericity” as 

described in Fig. 14. Also note that Fig. 15 also includes 

data from German [21] and Milewski [22] who actually 

physically measured values of the maximum random 

packing fraction for several fibers and discs of different 

aspect ratios. Once the volume fraction of a particle 

exceeds its maximum random packing fraction then Flory 

[23] points out that the particles with high aspect ratios 

like fibers must necessarily begin to orient to allow more 

fibers to contribute to the packing fraction. Consequently, 

after the maximum random packing fraction has been 

reached, then the overall packing fraction often begins to 

drop until the oriented fibers get close enough to each 

other to begin to allow an increase the packing fraction 

again. 



  

 

Table 3. Maximum Random Packing Fractions and Predicted Aspect Ratios. 

Carbon Black 

in Nylon 6,6  

Ketjenblack       

EC-600JD

Carbon Black 

in Lexan 

Ketjenblack       

EC-600JD

Pitch Based 

Carbon Fiber 

in Nylon 6,6  

Thermograph 

DKD X

Pitch Based 

Carbon Fiber 

in Lexan  

Thermograph 

DKD X

Specialty 

Graphite in 

Nylon 6,6  

Thermocarb 

TM CF-300

Specialty 

Graphite in 

Lexan  

Thermocarb 

TM CF-300

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

Sudduth             

PT Model

  Volume Fraction at Maximum Conductivity, max
0.1021 0.0559 0.2621 0.2576 0.5743 0.5551

Sudduth Aspect Ratio, Length/Diameter --- Fiber 48.17 85.77 19.40 19.79 4.51 5.18

Mamunya Aspect Ratio, Length/Diameter --- Fiber 47.67 88.70 16.21 23.36 2.89 3.42

Sudduth Aspect Ratio, Diameter/Length --- Disc 16.85

Clingerman Measured Average Aspect Ratio 16 16 3 3

Sudduth Fraction--- Fiber 0.3084 0.3084 0.6134 0.6134

Mamunya Fraction --- Fiber 0.2648 0.2648 0.5702 0.5702
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Fig. 14. Relative Ratio of Surface to Volume Fraction for a Non-

Spherical Particle to that of a Sphere of Equivalent Volume as a Function 

of Aspect Ratio [19]. 

 
Fig. 15. Theoretical and Measured Random Packing Fractions for 
Cylindrical Fibers Modeled as a Function of Sphericity but Plotted as a 

Function of Aspect Ratio [19]. 

 

 While several models have been addressed in the 

literature to predict the maximum random packing fraction 

of different particle shapes as a function of aspect ratio 

[15,19,23-26] only two of these models [15,19] have been 

included in Fig. 15. 

 It is interesting that the volume fractions yielding 

maximum conductivity as calculated by equation (24) and 

summarized in Table 2 appear to yield nearly identical 

values for the same carbon filler with two different 

polymers as the matrix.    

 A comparison of these calculated maximums to the 

maximum random of the packing fraction for the same 

fillers based on their aspect ratios is shown in Table 3.   

The results in Table 3 have been addressed in two ways.  

First the aspect ratio of the fillers have been calculated 

from their calculated concentrations giving the maximum 

conductivities. The second approach was to use the 

measured aspect ratio measured for the carbon fillers and 

then using the models in Fig. 15 to calculate their 

estimated random packing fraction.  

 For reference, Clingerman measured an aspect ratio of 

16 for the carbon fiber and an aspect ratio for the 

speciality carbon to be approximately 3.   In general, there 

was an excellent relative agreement within experimental 

error in comparing the measured concentration for the 

maximum conductivity and the maximum random packing 

fraction for both the specialty carbon and the carbon fiber. 

 Unfortunately, Clingerman was not able to measure 

an aspect ratio for the carbon black. 

 However, the masters thesis of Geraedts [27] did 

provide a strong indication as indicated in Table 4 that the 

carbon black Ketjenblack EC-600JD does appear to have a 

larger surface to volume ratio than the other carbon blacks 

evaluated by Geraedits [27].  There is a further indication 

in Geraedits thesis that this carbon black can separate into 

different disk like plates with a very high surface to 

volume ratio. Consequently, this carbon black then would 

be expected to have the very low random packing fraction 

as was found. 

 
Table 4. Characteristics of Some Carbon Black Powders (From  
Geraedts [27] with Permission). 

Carbon Black Manufacturer BET         

(m
2
/g)

Particle 

Diameter    

(nm)

Application

Printex 30 Degussa 80 27 Printing Inks

Printex XE-2 Degussa 950 30 Electrical Conductive 

Coatings and Plastics

Ketjenblack      

EC 600JD

Akzo Nobel 1250 30 Electrical Conductive 

Coatings and Plastics

 



  

 
 In any case it was some what surprising that the 

concentration for maximum conductivity indicated by 

equation (25) resulting from the Sudduth Percolation 

Threshold model also appears to yield values close to the 

maximum random packing fraction for each type of 

particle being evaluated. 

Evaluation of the Interfacial Surface Energy of 

Additional Carbon Fillers in both Nylon 6,6 and Lexan 

Using the New Percolation Threshold Model 

As indicated earlier both Mamunya [15,16] and 

Clingerman [10,13,14] have suggested that their value of  

Kc should have some functional relationship with  the 

interaction surface energy, pf. Since the value of  in the 

model developed by this author has been modified directly 

from the value of Kc as originally proposed by Mamuny 

and Clingerman, then there would be some expectation 

that the value of  should directly relate to the value of the 

interaction surface energy, pf, as well. This proposition 

was then addressed using the very useful surface energy 

data generated in Clingerman’s thesis [13]. 

 
Table 5. Clingerman’s Measurements of Surface Energy of Carbon 

Fillers and Polymers. 

Material 

Name 

Common 

Name 

Materials 

State 

Polar 

Component 

mJ/m2 

Dispersive 

Component 

mJ/m2 

Total 

Surface 

Energy 

mJ/m2 

Zytel 101 

NC010 
Nylon 6,6 Solid 2.42 42.21 44.64 

Zytel 101 

NC010 
Nylon 6,6 Melt 17.24 28.68 45.92 

Lexan HF 

1110-111N 
Polycarbonate Solid 1.97 38.26 40.23 

Lexan HF 

1110-111N 
Polycarbonate Melt 8.55 29.50 38.05 

Ketjenblack 

EC-600JD 
Carbon Black Powder 2.18 19.59 21.77 

Thermograph 

DKD X 
Carbon Fiber Powder 3.99 20.01 24.00 

Thermocarb 

TM CF-300 

Synthetic 

Graphite 
Powder 5.47 16.76 22.23 

 

 Clingerman [13] evaluated the surface energies of the 

different components of the carbon fillers as well as the 

polymers separately as summarized in Table 5. In 

addition, the three different approaches to calculating the 

interaction surface energies evaluated in this study  

have been summarized in Table 6. The first approach 

indicated in Table 6 is the classic approach originally 

proposed by Fowkes [17].  The second approach indicated  

in Table 6 was the one proposed by Mamunya [15,16]. 

The third approach in Table 6 was originally proposed by 

Owens, and Wendt [29] but utilized more recently by 

Clingerman et al., [13,14].  

 
Table 6. Equations for Calculating the Interfacial Surface Energy. 

Equation Author 

pf =  p +  f  - 2(p
df

d )0.5 Fowkes(17) (1964) 

pf =  p +  f  - 2(pf )
0.5 Mamunya(15,16) (1997&1999) 

pf = p + f  - 2(p
df

d)0.5 - 2(p
pf

p)0.5 Owens and Wendt(28) (1997) & 
Clingerman(13,14) (2001 & 2003) 

where 

p = Polymer surface tension  

f =  Filler surface tension 

pf =  Interfacial surface tension 

p
d = Dispersive component of the polymer surface tension 

f
d = Dispersive component of the filler surface tension 

p
p = Polar component of the polymer surface tension 

 f
p = Polar component of the filler surface tension  

 

 The results calculated in Table 7 have utilized the 

equations in Table 6 as well as the data generated by 

Clingerman [13] indicated in Table 5.  The results in 

Table 7 clearly show that the most consistent correlations 

were obtained between the Fowkes [17] interaction surface 

energies and both the Insulation Surface Interaction 

Magnitude, , and the calculated concentration at 

maximum conductivity, max.   

 
Table 7. Surface energy calculations. 

Composites State Beta 

Values

Maximum 

Volume 

Fraction

Ln(Cond Ratio), 

Ln(f/p)

Fowkes  

mJ/m
2

Mamunya 

mJ/m
2

Owens and 

Wendt   

mJ/m
2

  Carbon Black in Nylon 6,6 Solid 0.015 0.1021 41.81 8.8985 4.0622 4.3047

  Carbon Fiber in Nylon 6,6 Solid 0.027 0.2621 44.88 10.5152 3.1767 4.3005

  Synthetic Carbon in Nylon 6,6 Solid 0.075 0.5743 48.73 13.6745 3.8669 6.3979

  Carbon Black in Lexan Solid 0.0022 0.0559 44.11 7.2455 2.8119 3.1008

  Carbon Fiber in Lexan Solid 0.0165 0.257 47.17 8.8917 2.0844 3.2844

  Synthetic Carbon in Lexan Solid 0.055 0.5551 51.02 11.8147 2.6499 5.2493  

  Carbon Black in Nylon 6,6 Melt 0.015 0.1021 41.81 20.2836 4.4546 8.0226

  Carbon Fiber in Nylon 6,6 Melt 0.027 0.2621 44.88 22.0081 3.5248 5.4205

  Synthetic Carbon in Nylon 6,6 Melt 0.075 0.5743 48.73 24.3013 4.2500 4.8794

  Carbon Black in Lexon Melt 0.0022 0.0559 44.11 11.7407 2.2579 3.1061

  Carbon Fiber in Lexan Melt 0.0165 0.257 47.17 13.4580 1.6116 1.7765

  Synthetic Carbon in Lexan Melt 0.055 0.5551 51.02 15.8089 2.1129 2.1314

 

 The results for both the melt evaluations and the solid 

evaluations indicated in Table 7 have been plotted in  

Fig. 16 and Fig. 17 respectively. The results for the melt 

calculations in Figure 16 show two different straight lines 

for Nylon 6,6 and Lexan with the Fowkes interfacial 

surface energy as a function of  . However, the plot of 

the Fowkes interaction surface energies for both the solid 

calculations for both Nylon 6,6 and Lexan yielded an 

effective combined straight line with insulation surface 

interaction magnitude, .     
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Fig. 16. Fowkes Interfacial Surface Energy vs Beta Values for Carbon 

Fillers in Melted Nylon and Lexan. 



  

 

y = 82.719x + 7.5374

R
2
 = 0.9675

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

Beta Values

F
o

w
k

e
s
 I

n
te

rf
a

c
e
 S

u
rf

a
c

e
 E

n
e

rg
y
, 

m
J

/m
2

Results for Three Different Carbon Fillers in Both Nylon and Lexan Solid Measurements

Linear (Results for Three Different Carbon Fillers in Both Nylon and Lexan Solid Measurements)

 
Fig. 17. Fowkes Interfacial Surface Energy vs Beta Values for Carbon 

Fillers in Solid Nylon 6,6 and Lexan. 

 

 Also note from the results in Table 7 that there 

appears to be a strong direct correlation between the 

insulation surface interaction magnitude, , and the 

concentration at the maximum conductivity, max, as 

indicated in Fig. 18.  
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Fig. 18. Maximums for the Sudduth Percolation Threshold Model for 
Three Carbon Fillers in Nylon 6,6 and Lexan vs Beta Constants. 

Table 8. Comparison of Maximum Percolation Threshold, ciMax, Vs 

Fowkes Interfacial Surface Energy, pf. 

Composites State Sudduth PT 

Model 

Maximum 

Percolation 

Threshold, 

ciMax 

Sudduth-

Landauer 

Maximum 

Percolation 

Threshold, 

ciMax 

Fowkes  

mJ/m
2
,     

pf

  Carbon Black in Nylon 6,6 Solid 0.0145 0.0356 8.8985

  Carbon Fiber in Nylon 6,6 Solid 0.0817 0.1172 10.5152

  Synthetic Carbon in Nylon 6,6 Solid 0.0985 0.131 13.6745

  Carbon Black in Lexan Solid 0.0183 0.0356 7.2455

  Carbon Fiber in Lexan Solid 0.0764 0.1172 8.8917

  Synthetic Carbon in Lexan Solid 0.0848 0.131 11.8147

 

 The results in Table 8 as shown in Fig. 19 and  

Fig. 20 indicate that for the models addressed in this study 

a relationship does appear to exist between the maximum 

percolation thresholds, ciMax, and the Fowkes interaction 

surface energies, pf, as originally implicated by Miyaska, 

et al., [1]. However, the relationships indicated in Fig. 19 

and Fig. 20 do not appear to be linear. 
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Fig. 19. Fowkes Interfacial Surface Energy, pf Vs Maximum 

Percolation Threshold, ciMax, in Lexan. 
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Fig. 20. Fowkes Interfacial Surface Energy, pf Vs Maximum 

Percolation Threshold, ciMax, in Nylon 6,6. 

 Finally, it appears to be conclusive that the insulation 

surface interaction magnitude, , from the new percolation 

threshold model developed by this author does appear to 

have a strong primarily linear relationship to Fowkes 

interaction surface energies, pf , for solid surface energy 

measurements  

Conclusions 

Of the three different approaches used in calculating the 

interaction surface energies only the interfacial surface 

energies calculated using Fowkes equation gave the most 

consistent results. In addition, the solid evaluations used in 

calculating the Fowkes interaction surface energies, pf, 

gave just one consistent linear correlation with the  

constant from the Percolation Threshold Model previously 

published by this author. This correlation worked well for 

all the data evaluated for both Nylon 6,6 and Lexan. 



  

 
 It was found that the previously published percolation 

threshold model fit the data extremely well over the whole 

concentration range for all six sets of data sets evaluated.   

The electrical conductivity data evaluated in this study 

included composites prepared from both Nylon 6,6 and 

Lexan  and formulated with a carbon black, a pitch based 

carbon fiber,  and a specialty graphite. 

 The new Landauer model modified introduced in this 

study was also able to give a reasonably good fit of all the 

data addressed in this study over the whole concentration 

range.   

 A direct linear correlation was also found between the 

calculated concentration at the maximum conductivity, 

max, with the insulation surface interaction magnitude,    

 The Maximum Percolation Threshold concentration, 

ciMax, did increase with an increase in the Fowkes 

interfacial Surface Energy, pf, for both the new 

Percolation Threshold Model developed by this author and 

the Modified-Landauer Model.   However, the correlations 

were not linear. 

 Three concurrent mathematical conditions were found 

to occur at the same concentration for percolation 

threshold S-shaped curves. These conditions include the 

Inflection Point, the maximum slope and the maximum 

extrapolated percolation threshold concentration 

calculated at the same concentration.  

 One extraordinary characteristic of the Sudduth 

Percolation Threshold model is that it is possible to 

evaluate as separate equations both the conducting filler 

component and the insulating matrix component. In 

general it was found that the conductivity component, 

FConductivity (), is a straight line with slope (1/) that 

increases linearly with concentration of the filler while  

the insulation component, FInsulation (), decreases 

exponentially with an increase in filler concentration.  

 In general, the percolation threshold models 

addressed in this study introduced several new quantities 

that are expected enhance the understanding of the 

percolation threshold process.   

 This study also confirmed that the concentration, 

max, at maximum conductivity from the S-shaped 

percolation threshold curve for electrical conduction 

measurements is most likely the maximum random 

packing fraction for the conductive particle in the 

formulation.    

 

Appendix I 

Landauer percolation threshold model: 
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The second derivative gives 

 

 

 

Appendix II 

A straight line through the point at  will have the 

following equation  

Ln(/p() = (Slope()) + Intercept()         B-1 

When   Ln(/p() = 0,  

 Then the Projected Percolation Threshold, ci, on the 

concentration axis can be calculated at each point as 

 
 

Hence 
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d/)/(
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dLn
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   or  
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p

pp

d
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Where 

 = Conductivity of composite at volume fraction  

p = Conductivity of the base polymer or matrix  

 = Volume fraction of filler 

ci = Projected Percolation Threshold on the concentration 

axis 

ciMax = Maximum Projected Percolation Threshold on the 

concentration axis 

 

Appendix III 

   
Sudduth Percolation Threshold Model 
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