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Introduction 

The concept of metamaterial was initially introduced to 

explain the striking physical properties of photonic crystals, 

composed of resonant elements or having a very large 

dielectric contrast, in a simple and clear manner [1-6]. 

 Since Victor Veselago, in 1968, considered for the first 

time media with simultaneously ϵ and µ negative from a 

theoretical point of view [7]. His pioneering work made it 

possible to predict, for example, that the phase velocity and 

energy flow in such media could point in opposite 

directions. Thus, the media could be considered to have a 

negative refractive index (n). He also systematically 

investigated many effects resulting from his findings, 

including negative refraction at an interface, negative 

Doppler shifts, etc. As well, he considered the behavior of 

concave and convex lenses manufactured with such media 

showing also that a flat slab of material with 𝑛 = −1 could 

image a point source located on one side of the slab onto 

two other points, one inside the slab and one on the other 

side of it (provided that the thickness of the slab was thin 

enough). Therefore, their realization took the path of 

engineered structures that have been called, metamaterials, 

which owes its origin to R. M. Walser who defined them as 

“Macroscopic composites having a manmade, three-

dimensional, periodic cellular architecture designed to 

produce an optimized combination, not available in nature, 

of two or more responses to specific excitation” in 1999 

[8,9]. 

 In 1996 Sir John Pendry, from Imperial College 

London, presented a practical way to implement an 

electromagnetic metamaterial, obtaining with the help of 

his collaborators an artificial material (metamaterial) with 

negative dielectric permittivity ϵ [1]. 

 The next challenge was to obtain metamaterials with 

negative magnetic permeability, even though in nature there 

are media with negative permittivity called ferroelectrics, 

the problem was to manufacture media with negative 

permittivity artificially. Thus, in 1999 again Pendry and his 

collaborators devised a way to obtain a medium with 

negative permeability from "C" shaped resonators [4]. A 

year later, David Smith and his collaborators of the 

University of California in San Diego were the first to 

implement in a practical way Pendry's ideas and 

manufactured a metamaterial that presents simultaneously 

both negative parameters [5]. 
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Subsequently a metamaterial with a negative index of 

refraction could be experimentally verified [10] and such 

interesting phenomena as super resolution [6] and 

invisibility cloak were demonstrated [11]. 

A photonic metamaterial represents a homogeneous 

medium with effective electromagnetic response that, in 

general, turns out to be nonlocal [12,13]. The metamaterial 

concept has been extended to phononic crystals being 

described as homogeneous media with effective dynamic 

parameters. Conventional homogenization theories of 

phononic crystals describe their vibrational properties in the 

long wavelength limit, i.e. when the microscopic acoustic 

field smoothly varies inside each component (matrix and 

inclusion) in the unit cell. However, if the heterogeneous 

system contains resonant elements or the contrast between 

the elastic moduli of the components is sufficiently high, the 

conventional description may fail. For example, a FCC 

arrangement of soft-rubber spheres in water, having Mie 

resonances at low frequency, behaves as a double-negative 

acoustic medium with simultaneously negative effective 

bulk modulus and mass density [14]. In that work, the 

standard homogenization [15] was modified, by using the 

coherent potential approximation method, to explain the 

resonant frequency dependence of the acoustic 

metamaterial parameters. Another approach, namely the 

multiple scattering theory has had to be applied for 

calculating effective sound velocity and density of circular-

shaped clusters consisting of two-dimensional distributions 

of rigid cylinders in air in the low-frequency limit 

[16,17,18]. In Ref. [19], the method for retrieving effective 

properties of electromagnetic materials from 

experimentally-measured reflection and transmission 

coefficients [20,21] has been extended to acoustic 

metamaterials. 

 A homogenized phononic crystal, composed of a solid 

host matrix, is denoted elastic metamaterial [22]. 

Comparing with an acoustic metamaterial in the isotropic 

case, the elastic metamaterial is characterized by the 

effective shear modulus, besides the bulk modulus and mass 

density. Recently [23,24], applying the effective medium 

theory for certain elastic metamaterials in two dimensions, 

which is valid beyond the quasistatic limit, various resonant 

elastic metamaterials, possessing negative shear modulus 

and negative mass density, have been proposed. 

 More recently, more and more attention has been paid 

to investigating the elastic wave properties of three-

dimensional periodic solid-solid (or solid-fluid) media. 

Within the framework of the homogenization approach in 

Ref. [25], the anisotropy of the effective mass density in the 

low-frequency limit for homogenized three-dimensional 

phononic crystals, having solid and liquid materials in the 

unit cell, was studied. There, the form-factor division 

approach, which has been successfully applied to calculate 

effective parameters for photonic metamaterials [12,13,26], 

was employed to reduce the computing time. 

 A different but not less general homogenization 

scheme was developed in the work [27] where expressions 

for the fully dynamic effective material parameters, 

governing the spatially averaged fields by using the plane 

wave expansion method, were obtained. As it is shown 

there, the effective material parameters can be calculated 

for arbitrary frequency and wave number combinations, 

including but not restricted to Bloch wave branches for 

wave propagation in the periodic medium. 

 In the present work, we present a homogenization 

theory that has contributed to the recent development in the 

area of acoustic metamaterials to calculate the effective 

elastic response for phononic crystals of arbitrary Bravais 

lattice and any type of the inclusions inside the unit cell. 

The theory is based on the Fourier formalism, but unlike the 

previous work [28-31], it provides the dependences of all 

the components of the effective mass-density and 

compliance tensors upon frequency and wave vector. Here, 

we numerically model metamaterials in one and two 

dimensions and summarize the main achievements and 

contributions of our theory to date [29,32,33]. 

Calculation of effective parameters 

Let us consider an elastic phononic crystal (PC) 

characterized by position-dependent mass density 𝜌(𝑟) and 

stiffness tensor 𝐶𝑖𝑗𝑘𝑙(𝑟). In the PC, the displacement vector 

�⃗⃗� = (𝑢1, 𝑢2, 𝑢3) and the Cauchy stress tensor 𝜎𝑖𝑗 obey 

Newton’s and Hooke’s laws: 

−𝜔2𝜌(𝑟)𝑢𝑖 = 𝛻𝑗𝜎𝑖𝑗,  (1) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝑟)𝛻𝑘𝑢𝑙.

  

(2) 

Using Voigt notation, we shall rewrite Eqs. (1) and (2) in 

matrix form: 

[
03 𝛻3×6

(𝛻3×6)𝑇 06
] �⃗�(𝑟) = �̿� �̿�(𝑟)�⃗�(𝑟).

 

(3) 

Here, we have introduced the nine-dimensional column 

vector �⃗�(𝑟), formed by the components of the displacement 

and stress vectors as 

[�⃗�(𝑟)]𝑇 = (𝑢1, 𝑢2, 𝑢3, 𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6).
 

(4) 

The 3×6 matrix 𝛻3×6

 

is defined as 

𝛻3×6 = (

𝛻1 0 0
0 𝛻2 0
0 0 𝛻3

   0 𝛻3 𝛻2

     𝛻3 0 𝛻1

     𝛻2 𝛻1 0
),  (5) 

whereas the 9×9 matrix �̿� in Eq. (3) is given by 

�̿� ≡ [
−𝜔2𝐼3 03×6

06×3 𝐼6
],  (6) 

where I3 (I6) and 03 (06) are unity and zero matrices of order 

3 (6), and 03×6 (06×3) stands for a 3×6 (6×3) zero matrix. 

The 9×9 matrix �̿�(𝑟) in Eq. (3) is defined in terms of the 

mass density 𝜌(𝑟) and 6×6 compliance tensor �̄�(𝑟) as 

�̄̄�(𝑟) = [
𝜌(𝑟)𝐼3 03×6

06×3 �̄�6×6(𝑟)
]. (7) 

Because of the periodicity of 𝜌(𝑟)
 
and �̄�(𝑟), we can expand 

the matrix �̿�(𝑟) (7) into Fourier series: 

�̿�(𝑟) = ∑ �̿�(�⃗�)𝑒𝑖�⃗�·𝑟
�⃗� ,  (8) 

where the summation ranges over all the vectors of the 

reciprocal lattice of the PC. Besides, the nine-dimensional 

vector �⃗�(𝑟) (4) should fulfill the Bloch theorem. Then, 

�⃗�(𝑟) = 𝑒𝑖�⃗⃗�·𝑟�⃗�(�⃗� = 0) + 𝑒𝑖�⃗⃗�·𝑟 ∑ �⃗�(�⃗�)𝑒𝑖�⃗�·𝑟
�⃗�≠0 . (9) 



  

 Since the Bloch wave vector �⃗⃗� can be considered inside 

the first Brillouin zone (BZ), we define the average v-field 

as the term with �⃗� = 0 in Eq. (9): 

�⃗⃗�(𝑟) ≡ 𝑒𝑖�⃗⃗�·𝑟�⃗�(�⃗� = 0) = 𝑒𝑖�⃗⃗�·𝑟 �⃗⃗�0.  (10) 

 This averaging procedure corresponds to a truncation 

of the plane wave expansion (9) so that the Fourier 

components outside the first BZ are eliminated [34]. As 

follows from Eqs. (3) and (9), the coefficients �⃗⃗�0 = �⃗�(�⃗� =

0) and �⃗�(�⃗� ≠ 0) satisfy the algebraic system of equations: 

∑ �̿��⃗�′ (�⃗⃗�; �⃗�, �⃗�′) ⋅ �⃗�(�⃗�′) = 0,  (11) 

where 

�̿�(�⃗⃗�; �⃗�, �⃗�′) = − [
03 𝐾3𝑥6(�⃗⃗� + �⃗�)

(𝐾3×6(�⃗⃗� + �⃗�))
𝑇

06

] 𝛿�⃗�,�⃗�′ − 𝑖𝛺 ̿�̿�(�⃗� − �⃗�′), (12) 

𝛿�⃗�,�⃗�′

 

stands for the Kronecker delta, and the 3×6 matrix 

𝐾3×6(�⃗⃗�) has the form 

𝐾3×6(�⃗⃗�) = (

�⃗⃗�1 0 0 0 �⃗⃗�3 �⃗⃗�2

0 �⃗⃗�2 0 �⃗⃗�3 0 �⃗⃗�1

0 0 �⃗⃗�3 �⃗⃗�2 0 0

).           (13) 

We can write the coefficients �⃗�(�⃗� ≠ 0) in terms of �⃗⃗�0 
employing the equations for �⃗� ≠ 0 in (11). We get 

�⃗⃗�(�⃗�) = − ∑ �̿�𝑆
−1

�⃗�′≠0 (�⃗⃗�; �⃗�, �⃗�′) ⋅ �̿�(�⃗⃗�; �⃗�′, 0) ⋅ �⃗⃗�0. (14) 

 

Here, �̿�𝑆(�⃗⃗�; �⃗�, �⃗�′)

 

is a submatrix, obtained from 

�̿�(�⃗⃗�; �⃗�, �⃗�′)

 

(12) after eliminating its block rows (columns) 

with �⃗� = 0
 

(�⃗�′ ≠ 0). Substituting the expression for 

�⃗�(�⃗� ≠ 0) (14) and using the relation [7] between the 

inverse of a submatrix (�̿�𝑆
−1) and the inverse of the original 

matrix (�̿�−1) into Eq. (11) with �⃗� = 0, we have derived an 

equation for the amplitude �⃗⃗�0 of the average v-field: 

 

[
03 𝐾3𝑥6(�⃗⃗�)

(𝐾3×6(�⃗⃗�))
𝑇

06

] �⃗⃗�0 = −𝑖�̿� �̿�eff(�⃗⃗�)�⃗⃗�0 , (15) 

where the effective nonlocal-response matrix �̿�𝑒𝑓𝑓(�⃗⃗�) is 

explicitly given by 

�̿�eff(�⃗⃗�) = 𝑖�̿�−1{�̿�−1(�⃗⃗�; 0,0)}
−1

+ 

𝑖�̿�−1 [
03 𝐾3𝑥6(�⃗⃗�)

(𝐾3×6(�⃗⃗�))
𝑇

06

].   (16) 

Here, �̿�−1(�⃗⃗�; 0,0) is a 9×9 block, obtained from the inverse 

�̿�−1(�⃗⃗�; �⃗�, �⃗�′) of the infinite-size matrix (12), and {. . . }−1 

symbolizes the inverse of the 9×9 matrix block. 

 In order to show the usefulness of our main result 

(formula (16)), we have calculated the effective parameters 

of various phononic crystals possessing inversion 

symmetry (Fig. 1). The block structure of the matrix 

�̿�𝑒𝑓𝑓(�⃗⃗�) for such systems has the form 

�̿�eff(�⃗⃗�) = [
�̄�eff(�⃗⃗�) 03×6(�⃗⃗�)

06×3(�⃗⃗�) �̄�eff(�⃗⃗�)
],  (17) 

where �̄�eff(�⃗⃗�) and �̄�eff(�⃗⃗�) are effective mass-density and 

compliance tensors. 

 

 
Fig. 1. (a) 1D phononic crystal; (b) 2D phononic crystal and (c) 2D sonic 

crystal (solid medium embedded in fluid). In all cases a is the lattice 
constant. 
 

Results 

Fig. 2 exhibits graphs of the nonzero elements in the 

matrices  �̄�eff  and �̄�eff = �̄�eff
−1 for a square lattice of infinite 

Si bars, embedded in Al, versus the Si filling-fraction f.  The 

bars have a rectangular cross section, whose sides are 

parallel to the x- and y-axes and in a ratio of 1:2, 

respectively [35], see Fig. 1(b). Each principal axis of Si and 

Al cubic crystals has been oriented parallel to a principal 

axis of the two-dimensional (2D) PC. The calculations were 

carried out with a lattice constant a = 0.01m in the limit 𝜔 →
0 (𝑘 → 0). In this case, the effective mass-density tensor is 

diagonal: �̄�eff = (𝜌eff 𝛿𝑖𝑗), where  𝜌eff is a linear function 

of f (see Fig. 2(a)), i.e. 𝜌eff(𝑓) = 𝜌Al(1 − 𝑓) + 𝜌Si𝑓. 

 

Fig. 2. (Color online). Graphs of the effective mass density (a) and elastic 

stiffness constants [(b), (c), and (d)] for a square lattice of Si rectangular 

bars embedded in Al versus the Si filling fraction f, which were calculated 

in the quasistatic limit(𝜔 → 0, 𝑘 → 0). 



  

 On the other hand, the effective stiffness tensor �̄�𝑒𝑓𝑓
 

has nine independent elements in the interval 0 < 𝑓 < 0.5 

just like an orthorhombic crystal (Figs. 2(b), 2(c), and  

2(d)). At 𝑓 = 0, the system has cubic symmetry since 

�̄�𝑒𝑓𝑓 = �̄�𝐴𝑙 . If 𝑓 = 0.5, the Si bars touch each other with 

their faces perpendicular to the y-axis and the 2D PC 

transforms into a 1D PC. Hence, the homogenized PC 

acquires tetragonal symmetry for which there are only six 

independent stiffness constants (see Fig. 2). We have 

verified that our calculations in the quasistatic limit for Si/Al 

phononic crystals with either 1D or 2D periodicity coincide 

with the effective parameters predicted by the finite-

element (FE) and asymptotic-homogenization (AH) 

methods [36,37]. 

 

 
Fig. 3. (a) Effective bulk modulus and Effective sound velocities ((b) in 
the direction [100], (c) in the direction [010] and (d) in the direction [001]) 

for a square lattice of Si rectangular bars embedded in Al versus the Si 

filling fraction f. 

 

 It is very interesting to see that with the results shown 

in Fig. 2 and considering the well-known formulations of 

the acoustic physics of the orthorhombic crystalline 

symmetry (Eqs. (18)-(21)) [38-41], the bulk modulus and 

the velocities of sound in the periodic structure as a function 

of f are easily determined (see Fig. 3). Unlike other methods 

whose effective approximation of velocity is based on the 

expansion of plane waves of the velocity and elastic 

modulus fields present in the Christoffel equation [29]. 

Bulk modulus: 

𝐵 = 1 9⁄ (𝐶11 + 𝐶22 + 𝐶33 + 

        2𝐶12 + 2𝐶13 + 2𝐶23).   (18) 

Velocity of sound: 

(i) For waves propagating in the direction [100], 𝑛𝑦 = 𝑛𝑧 =

0
 
and

 
𝑛𝑥 = 1, therefore: 

 

𝑣𝑥 = 𝑐𝐿 = √
𝐶11

𝜌
, 𝑣𝑦 = 𝑐𝑇1 = √

𝐶66

𝜌
 

and 𝑣𝑧 = 𝑐𝑇2 = √
𝐶55

𝜌
.  (19) 

(ii) For waves propagating in the direction [010], 𝑛𝑥 =
𝑛𝑧 = 0

 
and

 
𝑛𝑦 = 1, therefore: 

𝑣𝑥 = 𝑐𝑇1 = √
𝐶66

𝜌
, 𝑣𝑦 = 𝑐𝐿 = √

𝐶22

𝜌
 

and 𝑣𝑧 = 𝑐𝑇2 = √
𝐶44

𝜌
.  (20) 

(iii) For waves propagating in the direction [001], 𝑛𝑥 =
𝑛𝑦 = 0

 
and

 
𝑛𝑧 = 1, therefore: 

𝑣𝑥 = 𝑐𝑇1 = √
𝐶55

𝜌
, 𝑣𝑦 = 𝑐𝑇2 = √

𝐶44

𝜌
 

and 𝑣𝑧 = 𝑐𝐿 = √
𝐶33

𝜌
.  (21) 

where the subscripts T and L indicate transversal and 

longitudinal, respectively. 

 Formula (16) can also be applied for determining  

the effective parameters of PC with a liquid component 

having zero shear modulus (𝜇 = 0). This is possible by 

using a very small value of 𝜇 (𝜇 → 0) in order for the 

stiffness matrix of the liquid (�̄�liq) to be invertible.  

With this mathematical artifice, we could calculate  

the effective mass density and acoustic parameters for 

square and hexagonal lattices of infinite metallic  

cylinders (medium a) embedded in water (medium b)  

as those studied in Ref. [30] by means of multiple  

scattering theory. We found that if the cylinders are 

isolated, the effective stiffness constants 𝐶eff,44, 𝐶eff,55  

and 𝐶eff,66 vanish with the auxiliary parameter 𝜇 → 0, 

whereas the constants 𝐶eff,𝑖𝑗(𝑖, 𝑗 = 1,2,3) tend to the value 

of the effective bulk modulus 𝐵eff. Our results for a  

square lattice of Al cylinders in water (see Fig. 1(c)), 

obtained with 𝑘𝑎 → 0 and a frequency 𝜔, satisfying  

0 < √𝜇/𝜌𝑏 < (𝜔𝑎/2𝜋) << √𝐵𝑏/𝜌𝑏, are shown in  

Fig. 4. The effective mass-density matrix �̄�eff turns out to 

be diagonal with principal values: 𝜌eff,𝑥𝑥 = 𝜌eff,𝑦𝑦 and 

𝜌eff,𝑧𝑧 (the cylinders are parallel to the z-axis).  

Their dependence on the cylinders radius R quantitatively 

agrees with the results of the work [37] (Fig. 10 therein). 

Notice that the calculated effective bulk modulus  
𝐵eff

 
coincides with the predictions of the well-known 

formula [16,28,42]:(1/𝐵eff) = (1/𝐵𝑎)𝑓 + (1/𝐵𝑏)(1 − 𝑓). 

Consequently, a good agreement between our result  

for the effective (longitudinal) sound velocity 𝑐eff =

√𝐵eff/𝜌eff,𝑥𝑥 and that obtained in Ref. [30] is also observed 

(panel (c) in Fig. 4). 



  

 

Fig. 4. Calculated dependences of the effective mass density (𝜌eff,𝑥𝑥 =

𝜌eff,𝑦𝑦 (squares) and 𝜌eff,𝑧𝑧 (cyrcles), panel (a)), bulk modulus (b) and 

longitudinal sound velocity (c) for a 2D square array of Al cylinders 
embedded in water on the cylinder radius R. Solid lines were calculated in 

Ref. [29]. 

 

 To illustrate the nonlocal effects, derived from the 

wave vector dependence of the effective matrix �̄̄�eff(𝜔, �⃗⃗�) 

(16), we have calculated the effective dynamic parameters 

for a rubber/Al 1D PC (Figs. 5 and 6) [43], see Fig. 1(a). 

The thicknesses of rubber and Al slabs are 𝑑rubber = 0.1𝑎 

and 𝑑𝐴𝑙 = 0.9𝑎 with 𝑎 = 0.01𝑚. In particular, we have 

considered transverse phonon modes propagating along the 

growth direction of the 1D PC, whose dispersion relation 

(�⃗⃗�0(𝜔) = 𝑘0(𝜔)�̂�) can be analytically described [44]. In 

panels (b) and (c) of Fig. 5 and Fig. 6, we compare the 

frequency dependences of the effective mass density 

𝜌eff,𝑦𝑦(𝜔, �⃗⃗�) and stiffness constant 𝐶44,eff(𝜔, �⃗⃗�) computed 

in both local (𝑘𝑎 → 0) and nonlocal (�⃗⃗� → �⃗⃗�0(𝜔)) regimes. 

Figs. 5(a) and 6(a) show that the dispersion relation  

for transverse modes, propagating in the homogenized  

PC, i.e. 

𝑘𝑧(𝜔) = 𝜔 lim
�⃗⃗�→�⃗⃗�0(𝜔)

√
𝜌eff,𝑦𝑦(𝜔,�⃗⃗�)

𝐶44,eff(𝜔,�⃗⃗�)
,  (22) 

and the exact phononic dispersion (solid line therein) are 

identical. The local effective parameters (see dashed lines) 

reproduce the phononic dispersion only near the center of 

the first BZ. It is very interesting that the homogenized PC 

behaves as a double-negative elastic metamaterial in the 

frequency interval, corresponding to the second 

propagating band (Fig. 6). Indeed, in such band the effective 

dynamic mass density 𝜌eff,𝑦𝑦 and the stiffness constant 

𝐶44,eff are both negative. Moreover, the effective mass 

density as well as 𝑘𝑧 vanish at the top of the band. We 

should comment that the sign of 𝑘𝑧 in the pass bands was 

determined by introducing a small dissipative part [45,46] 

in the shear modulus and imposing that ℑ(𝑘𝑧) be positive. 

As a result, ℜ(𝑘𝑧) (|ℜ(𝑘𝑧) |≫ ℑ(𝑘𝑧)) is positive (negative) 

in the first (second) phononic band. In the band gap, 𝑘𝑧 and 

the nonlocal effective elastic parameters turn out to have a 

noticeably-large imaginary part. 

 

 
 

Fig. 5. (a) Lowest frequency band for transverse modes propagating in a 

1D rubber/Al PC. Here, squares (dashed line) were (was) obtained by using 

the nonlocal (local) effective mass density 𝜌eff = 𝜌eff,𝑦𝑦 and stiffness 

constant 𝐶44,eff, which are respectively shown in panels (b) and (c). Solid 

line in (a) corresponds to the exact analytical phononic dispersion. 

 

 
 

Fig. 6. The same as in Fig. 5, but for the second propagating band of 
transverse modes. 

 

Conclusion & future prospective 

Using a general homogenization theory, based on the 

Fourier formalism, we have calculated in the low-frequency 

limit the effective dynamic mass density and compliance 

tensors for 1D and 2D phononic crystals, for the latter case 

with constituents solid-solid and solid-fluid. Also, we have 

calculated the effective sound velocities and the nonlocal 

effective parameters, namely mass density and stiffness 

tensor, for a 1D solid phononic crystal. The calculated 

effective parameters allow us to describe the phononic band 

structure of the phononic crystal not only in the local low-

frequency limit, but also beyond it. Besides, we have shown 



  

that the anisotropy in the effective dynamic mass-density, 

appearing at sufficiently large frequencies. Our results 

illustrate the usefulness of the applied nonlocal 

homogenization approach, based on the Fourier formalism. 

However, such an approach still requires the calculation of 

sums over a large number of reciprocal lattice vectors for a 

good accuracy of the results, especially when there is a high 

contrast of the mass density and elastic moduli of the 

materials in the unit cell of the phononic crystal. It should 

be noted that the iterative procedure, applied here to 

determine the phononic dispersion relation �⃗⃗�(𝜔), provides 

only one solution, which depends on the chosen initial value 

for the wave vector. Unlike others homogenization 

approaches, our theory is rather general since it provides 

explicit expressions for both the effective local and nonlocal 

mass density and compliance tensors of arbitrary phononic 

crystals. 

 In conclusion, we have derived explicit expressions for 

the tensors of the effective nonlocal elastic response of 

arbitrary phononic crystals. As seen in the previous 

sections, this theory provides the basis for creating a 

periodic metamaterial with homogenized properties, such 

as anisotropy in its physical properties, negative density and 

negative elastic moduli. Due to the generality of our results, 

they will be useful to design elastic or acoustic 

metamaterials with low losses in wide frequency ranges. 

Today our work-team has extensive advances based on this 

present approach for three-dimensional phononic crystals, 

which will be reported shortly. 
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Numerical Simulations present an approach for efficient, accurate 
calculations of the elastic wave properties of phononic crystals. We have 

derived formulas that along their application perfectly describe the 
effective non-local response in 1D elastic metamaterials, in the long-

wavelength limit the propagation of elastic waves in 1D and 2D solid-solid 

media, as well as, solid-liquid media. 
 

 


