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Abstract 

In this study the stress fields under uniaxial tension of the plane with arc cut were calculated. To describe the 

concentration of normal and shear stresses in the areas of the crack ends, new characteristics based on equilibrium 

conditions were introduced.  The influence of the angle of the crack arc opening and the direction of the plane tension 

was studied. It was found that those factors changed the value and the stresses sign at the crack ends. The opening angles 

of arc cracks and tension direction promoting the development of cracks under the influence of tensile strain, tensile 

stresses or combination of the stresses were determined. The promoting conditions that inhibit the cracks were studied. 

Copyright © VBRI Press. 
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Introduction 

One of the powerful and convenient methods to treat 

two-dimensional crack problems is the complex 

potential function method by Kolosov and 

Muskhelishvili [1-3].  Among various mathematical 

methods in plane elasticity, solving problems on the 

stress field of cracks using Muskhelishvili methods [1] 

gives good impression about the properties of the pole 

cracks. Physically poles treated as hubs with an 

infinitely high voltage. Then it is assumed that the 

characteristics of the pole completely determine the 

production of the crack, and therefore take the limit to 

short distances from the crack tip (asymptotic 

approximation), this ideology is discussed on literature 

work [2, 3].  However, the stronger materials as well as 

an infinitely high resistance degradation that would not 

crack the poles constrained. In the theory of equilibrium 

for cracks [4, 5] the gap between the cracks in the top 

gradually decreases. It is assumed that these forces 

cancel tearing stress on the pole so that the stress at the 

crack tip becomes finite. In the general formulas for the 

stress, this situation is realized by removing the polar 

term. 

 A method for producing solutions for linear elastic 

problem areas shift without poles at the ends of the plot 

was developed [6]. It was shown that the method at [6] 

can be used for the shear fracture [7]. In [8] the plane 

arc crack revealed a strong field with a high 

concentration of tensile stresses, is not related to the 

ends of the crack. Thus, the failure of the assumption of 

the existence of stoppers with an infinitely high 

resistance to fracture. Some key factors are, the 

possibility of making elastic problems without poles, 

the existence of significant hubs of tensile stresses in 

areas not connected to the ends of the cracks that 

indicated the asymptotic approximation gives enough 

correct and complete description. For a complete 

description of cracks approximation should be 

abandoned. 

 This article shows the results of the stress field at 

the ends of the arc crack in an elastic plane with a 

uniform field under infinity stretching. The problem of 

the stress field of the arc crack considered earlier [12, 

13], but only for the crack opening angle equal to 180 

degree, and in the asymptotic approximation. 

 

The Mathematical Method 

Homogeneous elastic plane with a circular arc (Fig. 1) 

is subjected to a uniaxial tensile homogeneous at 

infinity. It is assumed that edges of the cut are free from 

stress, the crack between the two sides make a gap, 

which is assumed to be small so that its effect on the 

stress field can be neglected and it is not large enough 

so that the deformation of the plane does not reduce 

surface cut at contact. 

 Elastic problem of the extension of the plane with an 

arc cut, whose edges are stress-free, was solved in [9-

12] to the problem of conjugation information. 

Complex potentials, which were used to calculate the 

characteristics of the field, are listed below: 
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where z = x + iy is a point in the complex plane 

containing the arc with unit radius centered at the origin 

(Fig. 1), a and b are coordinates of the ends of the arc 

cut-out, θ – is half the opening angle of the arc, the 

values of Г and Г   are sets stress at infinity. The crack 

in the middle is subjected to a tensile load. As the 

material is stretched, elastic energy is stored. Crack 

propagation becomes thermodynamically favorable; the 

elastic energy released per crack extension is equal to 

the surface energy necessary to form the new surfaces. 

Fig.1. also shows a contour plot of the stress field, 

which diverges at the crack tip. Adjusting the stress, 

surface energy, and Young's modulus changes the 

critical stress, all units are arbitrary. 

The uniaxial tensile stress with p: 

)2exp()2/(,4/ iрГрГ                        (4) 

where α is angle, measured counterclockwise from the 

axis of symmetry of the arc to the stretching direction. 

Secondary (auxiliary) functions are calculated from  

(1 and 2) as:  
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The value of the hydrostatic pressure: 
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where, ν is the Poisson's ratio (assumed to be 0.3). The 

stress tensor components can be given as: 
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 The derivatives of the components of the 

displacement vector can be written as: 
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where  =arg(z). Asymptotic transition was not 

performed. 

 

Fig. 1. Layout arc crack and acting load with a contour plot of the 

stress field, which diverges at the crack tip. 

 

 The calculation of the stress field changed the 

opening angle of the crack (2θ) from 20° to 180° with 

increments of 5-10°. The angle of the direction of 

stretching (α) changes from 0° to 90° in increments of 

5-10°. Radial angle (β) was measured from the vertical 

axis counterclockwise. 

 

Results and discussion 

The calculation results of the stress tensor distribution 

of perpendicular and tangent to the arc of unit radius are 

shown in Fig. 2, and Fig. 3. These data indicate that the 

shear stress at the endpoints of the arc crack is not 

constant. The intensity and value of stress change 

depending on the two angles 2θ and α.  For example, on 

the left end of the crack in Fig. 2a there is a pole, which 

was tearing at high stress. At the other end also has a 

terminal, but it is defined as a compressive strain. In 

Fig. 2b, the right end of the pole is no crack. Similar 

results were obtained for the tangent of the stresses 

(Fig. 3). 

 The magnitude of the stresses themselves is not 

convenient for quantifying the stresses in the end 

sections of cracks, since these stresses can be infinite. 

Therefore, other characteristics were adopted. 

 
Fig. 2. The distribution of σrr along an arc of unit radius for the angle 

120° of an arc crack under uniaxial tension at angles 30о (a) and  
16o (b). 
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Fig. 3. The distribution of τrβ along an arc of unit radius for the angle 

120° of an arc crack under uniaxial tension at angles 30о (a) and  
b = 48o (b). 

 

 Static stress fields satisfy the conditions of 

equilibrium: the sum of the amount of mechanical 

forces and moments acting on any area of the plane are 

zero. Consider a circle of unit radius centered at the 

origin, on the circumference of the circle creates 

external tensile stress. 

     5,02cos5,0    rr
       (11) 

         2/2sin5,0к
         (12) 

 The crack is located along the arc of the circle. 

Where, the free edges of the crack, the crack length at 

the normal to the line of fracture and shear stresses are 

absent. Equilibrium in equations (11 and 12) is valid. 

Then the rest of the boundary circle of the unit circle 

should have stresses that reached equilibrium. These 

stresses are related to the field of a crack. The solution 

of the elastic problem gives stresses representing to the 

sum of the external field and the stress field associated 

to the crack. Then the components of the force that 

restores the equilibrium can be written as: 
2
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where sin β and cos β are the projecting factors. The 

integrations are determined by the intensity of the 

terminal poles. Therefore, as a quantitative measure of 

the intensity of the poles at the ends of the crack with 

respect to the normal component of the stress tensor 

which can be written as: 
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 For the right and left ends of the cracks, 

respectively.  As measures of the intensity of the poles 

along the tangent component, the moments of forces 

acting on the boundary of the unit circle were used, and 

are shown as: 
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Fig. 4.  The characteristic Intensity distribution of the normal stresses 

to the arc which acting at the ends of the arc crack, at 2θ - α. The left 

half of the figure refers to the left end of the crack and the right to the 
right. 

 

 The same for the right and left ends of cracks, 

respectively. Fig. 4 and Fig. 5 show the distribution 

of the intensity characteristics at the field poles 2θ-α. 

The data obtained show the combination of loading 

parameters, contributing to the development of cracks. 

Therefore, the most dangerous, less dangerous, and 

those in which the edges of the crack are closed, 

are prerequisites for inhibiting the cracks. They are 

highly dangerous because of the normal stresses acting 

at α ≈ 30° and the relatively large angles of cracks on 

the left end of the fracture (Fig. 4). At the right end at  

α ≈ 60° represent compressive stresses, with such 

stresses, cracks do not develop. 

 Under the influence of shear crack, shear stresses 

(Fig. 5) will predominantly develop at the right end at  

α ≈ 15° with large opening angles. Which are the 

highest stresses acting for cracks with 2θ ≈ 130°. At the 

left end of the cracks with small α, the shearing stresses 

act in the opposite direction to it takes place at the right 

end. When α is close to 45º and the middle corners of 

the opening angles of the arcs shearing stresses crosses 

zero, and change sign, but then remain relatively small. 

 
Fig. 5. The distribution of the mechanical torques which acting along 

a semicircle of unit radius at 2θ - α. The left half of the figure refers 
to the left end of the crack and the right to the right. 

 

 The lines with zero values of normal and shear 

stresses have a different path. Near 2θ ≈ 60° and  

α ≈ 30° at the left end they intersect. The crack does not 

develop in the region of the angle fields adjacent to  

this combination. With other combinations, the 

development of a crack can be determined by the action 

of stresses or by their cooperative action. From the 

perspective of the joint action of normal and shear 

stresses, the most unsafe region for the right end of the 

crack at 2θ ≈ 150° and α ≈ 15°. 
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Conclusion  

The end concentrations of cracks having the shape of a 

circular arc depend on the crack opening angle and the 

direction of the external stretching field. Both tearing 

and shearing stresses at the ends vary in magnitude and 

sign. Calculations of the characteristics of these stresses 

made it possible to identify combinations of conditions 

that contribute and inhibit the development of arc 

cracks.  

 Scientific and practical value of the work is that the 

results can be used for the development of the theory of 

elastic deformation in the study of materials, also can 

be used for the development of the modern 

understanding of the processes occurring at the 

micro/nano level in solids. The results can be used as 

demonstration material for students of material science, 

for the possible creation of a laboratory practical.  
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