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Abstract 

From a quantum statistical viewpoint, four typical quantum states are Fock, Sub-Poissonian, Poissonian and Super-

Poissonian states. Quantum interactions are among Fock and Poissonian states. Using quantum statistics, model and 

simulation, this paper proposes two models: matrix and variant transformations: 1. MT Matrix Transformation – 

eigenvalue states; 2. VT Variant Transformation – invariant states to analyze three random sequences: 1) random;  

2) conditional random in a constant; 3) periodic pattern.  Four procedures are proposed. Fast Fourier Transformation FFT 

is applied as one of MT schemes and two invariant scheme of VT schemes are applied, three random sequences are used 

in M segments, and each segment has a length m to generate a measuring sequence. Shifting operations are applied on 

each random sequence to create m+1 spectrum distributions. Better than FFT, VT can identify Fock, Sub-Poissonian, 

Poissonian states in random analysis to distinguish three random sequences as three levels of statistical ensembles: 

Micro-canonical, Canonical, and Grand-Canonical ensembles. Applying two transformations, quantum statistics, model 

and simulation of modern quantum theory and applications can be explored. Copyright © VBRI Press. 

Keywords: Fock, sub-poissonian, poissonian, super-poissonian, matrix transformation, variant transformation, canonical 

ensembles. 

  

Introduction 

In quantum optics, quantum statistics and photon 

statistics play key roles. From a spectrum analysis 

viewpoint, quantum statistics are significantly different 

from classical random signal sequences. 

Quantum states 

Using photon counting technology, it is possible for 

photonic signal sequences to obtain statistical properties 

of photons. From a quantum state viewpoint, quantum 

photonic statistics correspond to three quantum states 

[1] shown in Fig. 1:  

 Super-Poissonian: Amplitude-squeezed state 

 Poissonian: Coherent state 

 Sub-Poissonian: Phase-squeezed state 

Two states: Super-Poissonian and Poissonian states 

correspond to semi-classic wave distributions as 

coherent states. However, sub-Poissonian states are 

linked with particle-based quantum interactions with 

quantum squeezed coherent effects.  

 
Fig. 1. Three quantum states: Super-Poissonian (Amplitude-squeezed 
state), Poissonian (Coherent state), Sub-Poissonian: (Phase-squeezed 

state). 

Stationary/non-stationary random processes 

In quantum measurement schemes, stationary/non-

stationary random properties play a key role to identify 

classic/semi-classic or quantum interactions. 
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 Classical coherent states: if angular variables are 

changed in phase spaces, quantum states keep in 

Poissonian states to make statistical parameters 

with invariant properties – stationary processes 

 Quantum squeezed coherent states: if angular 

variables are changed in phase spaces, quantum 

states will be changed from sub-Poissonian to 

Poissonian states to make statistical parameters 

with significantly variant properties – non-

stationary processes. 

 

Questions 

Using models and technologies of photonic statistics 

and quantum optics such as coherent Lasers, optical 

fibers, it is convenient to model and simulate classic 

coherent states and quantum squeezed coherent states. 

Whether it is possible to use discrete framework to 

make proper simulation, following two questions need 

to be asked: 

1. Using 0-1 random sequences, is it feasible to 

generate variations from sub-Poissonian states to 

Poissonian states? 

2. Under discrete statistical processes, does it be 

possible to handle stationary/non-stationary 

random processes? 

Matrix transformation and eigenvalue spectra 

Spectral analysis considers the problem of determining 

the spectral content (i.e., the distribution of power over 

frequency) of a time series from a finite set of 

measurements, by means of either nonparametric or 

parametric techniques. The history of spectral analysis 

as an established discipline started more than a century 

ago with the work by Schuster [2] on detecting cyclic 

behavior in time series.  

Signal analysis and processing 

In a modern digital environment, spectrum analysis 

plays a key role in signal processing that is a subfield of 

mathematics and information sciences to  concern the 

analysis, synthesis, and modification of signals such as 

sound, images, and biological measurements. For 

example, signal processing techniques are used to 

improve signal transmission, storage efficiency, and 

subjective quality, and to detect components of interest 

in a measured signal. This contains multiple subjects 

such as Matrix Theory [3], Non-continuous Orthogonal 

Functions [4], Probability [5], Transform Theory [6], 

Time Series [7], Linear Algebra [8], Time-Frequency 

Analysis [9], Stochastic Processes [10-12], Spectral 

Estimation [13, 14], Statistical Signal Analysis [15], 

Non-Linear Spectral Analysis [16], Matrix Analysis 

[17] etc. 

Variant construction 

In relation to discrete spectra, variant construction is an 

emerging approach to use multiple invariants to analyze 

random sequences in various applications such as 

stationary randomness of quantum cryptographic 

sequences [18], Chaotic random sequences [19] and 

variant construction [20]. 

Results in this paper 

In this paper, two transformations: MT Matrix 

Transformation and VT Variant Transformation on 

discrete sample sequences are proposed on three 0-1 

random sequences to generate various distributions 

under multiple parameter conditions. Sample cases are 

provided to show three quantum states: Fock, sub-

Poissonian and Poissonian states under discrete 

framework. 

Simulation model 

For a discrete sequence with N elements, it is 

convenient to be separated as segments in multiple 

pieces and each segment with m variables to support 

various applications. 

Two transformations on statistics   

Both two transformations use m variables as input to 

generate either m eigenvalues or two invariant 

measures as output. Five components are identified: 

Input, Transformation, Output, Distribution, Map. 

Key components  

Under MT and VT, it is convenient to use three random 

sequences on multiple segments and each segment with 

a constant length m to generate a series of spectra under 

various conditions. A set of shifting operations can be 

applied on a random sequence to generate m+1 sets of 

spectra. This type of shifting results on phase spaces 

can be created rich comparison effects on the three 

random sequences. Four procedures of Case A to Case 

D are described. 

Case A: MT on m variables 

Input: m 0-1 variables 

Transformation: An m×m Matrix 

Output: m eigenvalues 

Distribution: Two histograms are distinguished by 

eigenvalues 

Map: Two 1D maps on real and imaginary parts 

Case B: MT on m*M variables 

Input: m*M 0-1 variables 

Transformation: m  An m×m Matrix; r  initial 

shifting position 

Output: m*M eigenvalues 

Distribution: Two histograms are distinguished by 

eigenvalues 

Map: Two 1D maps on real and imaginary parts 

Case C: VT on m variables 

Input: m 0-1 variables 

Transformation: Two equations: p 1 and q 01 numbers 

Output: A pair of {p, q} measures 

Distribution: Two histograms are distinguished by  

{p, q} 

Map: A single point on two histograms 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Information_engineering_(field)
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Image_processing
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Case D: VT on m*M variables 

Input: m*M 0-1 variables 

Transformation: m  segment length; r  initial 

shifting position 

Output: M pairs of {p, q} measures 

Distribution: Two histograms are distinguished by M 

pairs of measures 

Map: Two 1D maps on 1DP and 1DQ distributions 

 From a measuring viewpoint, both Case A and 

Case C provide a single pass of measurements. There 

are maximal m positions distinguished on Case A in 

each map. However, Case C contains only a single 

point on each map. In addition, both Case B and Case D 

take M passes of measurements. Both cases are created 

specific distributions on a pair of maps under different 

conditions. 

Three selected random sequences 

The Original Random Sequence ORS 100MB is 

collected from the ANU quantum random number 

server [21] as a quantum random resource. Using this 

original sequence, three sub-sequences on each 0.8MB 

length are selected by various variation properties:  

1. A sub random sequence from ORS;  

2. A relative random sequence filtered by a micro 

canonical ensemble in a constant restriction from 

ORS; 

3. A periodic sequence of special pattern selected 

from ORS. 

Visual results 

Using proposed schemes, a 1D FFT is used as one of 

MT schemes on Case B, and two invariants are 

extracted as one of VT schemes on Case D. Three 

random sequences are applied to generate various maps 

respectively. Three groups of various results on nine 

maps are shown in Fig. 2 (a1-a3)-(c1-c3) on m=128, 

M=6400 respectively.  

 Undertaken shift operations, five sets of results are 

generated and results of twelve groups on 60 maps are 

shown in Fig. 3 (a1-a5)-(l1-l5) on m = 128, M = 6400,  

r = {0, 1, 20, 40, 64} respectively. 

Result analysis 

Analysis on Fig. 2 

From three groups of results shown in Fig. 2 (a1)-(c1), 

the most distributions of maps (a1) and (b1) are similar, 

they are complete different from map (c1). However, 

enlarged real histograms on maps (a2), (b2) and (c2), 

significant different distributions are observed in their 

middle parts.  

 Different from FFT maps, maps (a3)-(c3) are 

generated by VT schemes, 1DP map has a Poissonian 

distribution and 1DQ map has a sub-Poissonian 

distribution in map (a3). However, both 1DP and 1DQ 

in (b3) and (c3) maps have only a single spectrum in 

Fock states. 

 Analysis on Fig. 3 

Special stationary and non-stationary properties are 

observed from shifting initial conditions to relevant 

input sequences. From twelve groups of results in  

Fig. 3 (a?) - (l?), five distinct shifting numbers are 

selected and their corresponding maps are illustrated.  

 Stationary properties are observed in (a1)-(a5) with 

similar properties in (b1)-(b5); main parts of 

distributions in (c1)-(c5) are showing stationary 

properties, however, their enlarged parts of distributions 

in (d1)-(d5) have partial non-stationary properties. 

 There are similar distributions in (e1)-(e5) with 

stationary properties; however, significant differences 

are shown in enlarged distributions on (f1)-(f5) 

respectively. 

 Similar to distributions in (a1)-(a5) and (b1)-(b5), 

each group of four maps on either 1DP maps (g1)-(g5) 

or 1DQ maps (h1)-(h5) are shown in stationary 

properties under various shifting operations in VT 

schemes.  

 

Fig. 2. Three sequences: {1), 2), 3)} under two schemes: {FFT, VT}, 
m=128, M=6400; (a1) FFT on 1); (b1) FFT on 2); (c1) FFT on 3);  

(a2) enlarged map on FFT of 1); (b2) enlarged map on FFT of 2); (c2) 

enlarged map on FFT of 3); (a3) VT 1DP and 1DQ on 1); (b3) VT 
1DP and 1DQ on 2); (c3) VT 1DP and 1DQ on 3). 

 Different from distributions in (c1)-(c5) and (d1)-

(d5), non-stationary properties can be significantly 

identified in  each group of five maps on either 1DP 

maps (i1)-(i5) or 1DQ maps (j1)-(j5) shown in non-

stationary properties under shifting operations in VT 

schemes. The distributions are sharply changed from 

Fork states to sub-Poissonian and Poissonian states 

according to various shifting parameters. 

 Different from distributions in (e1)-(e5) and (f1)-

(f5) with enlarged differences, stationary properties can 

be significantly identified in  each group of five maps 

on either 1DP maps (k1)-(k5) or 1DQ maps (l1)-(l5) 

with only a Fock state with a constant measurement. 

 

Differences on two schemes 

From listed results, it is interesting to notice that VT 

1DP maps have corresponding distributions on FFT real 
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distributions in partial regions. A VT 1DP map is a 

distribution to the measure p, significantly different 

from FFT with m eigenvalues in representation. 

 In general, it is hard to apply statistical  

mechanism to distinguish sequences 1) and 2) using a 

FFT scheme; five pairs of (a1) -(a5) and (c1) -(c5) have 

most parts in similar distributions within 1% parts 

shown in minor differences. Only two groups of 

sequences: {1), 2)} and 3) can be identified using the 

FFT scheme. 

 

Fig. 3. Twelve groups of results on three sequences: {1), 2), 3)}, 

m=128, r={0,1,20,40,64}, M=6400;  Maps (*1) r=0, (*2) r=1, (*3) 

r=20, (*4) r=40, (*5) r=64; * ∈  {a,…,l},  ∈  {1,2,3,4,5};  

(a?)  FFT maps on 1); (b?) enlarged FFT maps on 1); (c?)  FFT maps 

on 2); (d?) enlarged FFT maps on 2); (e?)  FFT maps on 3); (f?) 

enlarged FFT maps on 3); (g?)  VT 1DP maps on 1); (h?) VT 1DQ 
maps on 1); (i?)  VT 1DP maps on 2); (j?) VT 1DQ maps on 2); (k?)  

VT 1DP maps on 3); (l?) VT 1DQ maps on 3). 

 However, a VT scheme can directly identify all 

three random sequences in 1DP and 1DQ maps 

respectively. In addition, shifting operators describe 

dynamic properties of statistical processes in details. 

Using statistical ensembles, various variations can be 

identified. 
 (g1)-(g5) and (h1)-(h5) of VT are shown in 

stationary random properties on sequence 1), 

global invariants in grand-canonical 

ensembles; 

  (i1)-(i5) and (j1)-(j5) of VT are shown in non-

stationary random properties on sequence 2), 

local invariants from micro-canonical 

ensembles to canonical ensembles; 

  (k1)-(k5) and (l1)-(l5) of VT are shown in 

constant stationary properties on sequence 3), 

shifting invariants in periodic condition as 

Fock states. 

In general, three distinct sequences: {1), 2), 3)} are 

naturally distinguished by the VT scheme to use 

stationary / non-stationary and random / periodic 

properties on three quantum states of statistical 

ensembles to identify various statistical processes 

respectively. 

 

Conclusion 

In this paper, two schemes: matrix and variant 

transformations are applied to discrete sequences. Both 

m eigenvalues and two invariants are extracted, 

statistical distributions are applied to organize multiple 

complex eigenvalue and invariant sequences as two 1D 

maps. Shifting operations are used to check stationary / 

non-stationary properties and random / periodic features 

for multiple segmented sequences. 

 Using three random sequences and two 

transformations: FFT and VT under statistical 

distributions, a set of testing results are compared.  

From result analysis, classical FFT scheme can classify 

three random sequences into two groups. However, the 

VT scheme has advances to identify three sequences as 

three groups. These visual maps provide initial 

experiment results using statistical ensembles in clear 

visual effects to link with Matrix Transformation and 

Variant Transformation. It is interesting to explore 

higher dimensional distributions based on multiple 

invariants in statistical ensembles, future explorations 

on quantum statistical theories and applications are 

required.  
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