TY - JOUR ID - 15038 TI - Nanostructured carbon materials for hydrogen energetics JO - Advanced Materials Letters JA - AML LA - en SN - 0976-3961 AU - Lesnicenoks, Peteris AU - Grinberga, Liga AU - Jekabsons, Laimonis AU - Antuzevičš, Andris AU - Berzina, Astrida AU - Knite, Maris AU - Taurins, Gatis AU - Varnagiris, Šarūnas AU - Kleperis ​, Janis AD - Y1 - 2017 PY - 2017 VL - 8 IS - 4 SP - 518 EP - 523 KW - Hydrogen KW - storage KW - grapheme KW - intercalation KW - Recycling DO - 10.5185/amlett.2017.7088 N2 - Hydrogen storage is one of the main problems, to catalyse wide hydrogen use in transportation, technology and energetics. Composites involving nanostructured carbon species could be the solution for hydrogen storage problem because of their promising surface/volume relation. Not only catalysis and gas sensing on graphene basis should be considered, but also metal decorated graphene structures for use in hydrogen storage should be an active field for research and development. Heat conductivity and large surface area of graphene-like materials can endorse research for hydrogen storage in low pressures and close to room temperature (RT) conditions - increasing possibility for RT-range devices in hydrogen energetics. For increased hydrogen storage investigations, we propose metal intercalated graphene structures, acquired during synthesis of graphene sheets. Intercalation, or decoration of graphene surfaces and edges have shown possibility to stabilize defects in graphene sheets. Graphene defects have shown to be sensitive against hydrogen gas and might as well prove themselves stable enough to achieve low pressure hydrogen storage. A simple method is proposed for synthesis of graphene sheet stacks (GSS). There is lack of research for synthesis of carbon nanomaterials from industrial graphite waste. Our research for stabilization of electrolyte solution and increased production amounts for hydrogen accepting samples continues. UR - https://aml.iaamonline.org/article_15038.html L1 - https://aml.iaamonline.org/article_15038_305d90ea02139fdd11f8a561f3e8a1bc.pdf ER -