%0 Journal Article %T Enhanced Arsenic Removal from Aqueous Solutions Via Magnesium Hydroxide Coated Iron Nanoparticles %J Advanced Materials Letters %I International Association of Advanced Materials %Z 0976-3961 %A Maamoun, Ibrahim %A Falyouna, Omar %A Shariful, Islam Mir %A Eljamal, Ramadan %A Bensaida, Khaoula %A Tanaka, Kazuya %A Tokunaga, Kohei %A Eljamal, Osama %D 2023 %\ 04/01/2023 %V 14 %N 2 %P 2302-1721 %! Enhanced Arsenic Removal from Aqueous Solutions Via Magnesium Hydroxide Coated Iron Nanoparticles %K Arsenic (As) %K Iron nanoparticles (nFe0) %K Magnesium hydroxide coating %K Reaction conditions %K Removal mechanism %R 10.5185/amlett.2023.021721 %X For several decades, arsenic (As) contamination of water was considered as an issue of great concern. In this study, magnesium hydroxide coated iron nanoparticles (nFe0@Mg(OH)2) were developed for enhancing arsenic removal from aqueous solutions. Several parameters were investigated, including Mg/Fe coating ratio, nFe0@Mg(OH)2 dosage, initial pH, reaction temperature, and initial As(V) concentration. The characteristics of the synthesized materials were studied using different techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption near edge structure (XANES). Results indicated the superiority of the highest Mg/Fe coating ratio (100%) to the other lower ratios in As(V) removal, corresponding to the adsorption contribution of Mg(OH)2 coating shell. Furthermore, nFe0@Mg(OH)2-100% could efficiently achieve around 100 % final As(V) removal efficiency at wide pH and temperature ranges (3.0 – 9.0, and 25 – 75 oC), at a low dosage of 0.5 g/L, reflecting the high applicability of the proposed material. Mg(OH)2 coating enhanced the anti-aggregation effect of the magnetic nanoparticles, which was confirmed by TEM measurements. Kinetics, thermodynamic, and isotherm analyses depicted that pseudo-second-order was the best model to describe the kinetics data, the endothermic nature of the reaction, and a maximum Sips sorption capacity of 89.97 mg/g (following Sips isotherm model), respectively. %U https://aml.iaamonline.org/article_23363_2a9283348f31d3e8ced7e061b9d025f8.pdf