%0 Journal Article %T Validation of Advanced Constitutive Models for Accurate FE Modeling of TPU %J Advanced Materials Letters %I International Association of Advanced Materials %Z 0976-3961 %A Eberlein, Robert %A Pasieka, Lucian %A Rizos, Dimosthenis %D 2019 %\ 12/01/2019 %V 10 %N 12 %P 893-898 %! Validation of Advanced Constitutive Models for Accurate FE Modeling of TPU %K TPU %K System Validation %K Material Calibration %K FE Simulation %R 10.5185/amlett.2019.0031 %X Thermoplastic polyurethanes (TPU) have become preferred materials for demanding high strain rate applications in many industries throughout past years. Due to their comparatively high abrasion resistance and toughness, TPU materials form an excellent fit for critical components sustaining high pressures in combination with harsh ambient conditions. This presentation illustrates a comparatively new field of critical applications for TPU components. While the operational pressures remain rather moderate at maximum 50 bar, challenges arise from high-frequency, cyclic loading conditions. In order to design robust dynamic TPU components, two main tasks must be accomplished: (i) visco-elastic-plastic material modeling and parameter identification, and (ii) material validation under realistic dynamic loading conditions on system level by means of advanced finite element (FE) simulations. This article puts (i) emphasis on the material calibration process and (ii) specifically demonstrates material validation on system level for selected TPU materials. In this context strain rate dependency of various TPU grades is discussed, which illustrates deficiencies of classical material modeling techniques available in commercial finite element software versus advanced nonlinear models. Eventually, recommendations are provided for an efficient but also accurate material calibration process of solid TPU materials that can significantly enhance product innovation processes. Copyright © VBRI Press. %U https://aml.iaamonline.org/article_13799_ed38e5a08edade7cb492cc383221497c.pdf