N. Rajeswara Rao; T. Venkatappa Rao; S.V.S. Ramana Reddy; B. Sanjeeva Rao
Abstract
Thermal, morphological and antioxidant properties of lignin irradiated with electron beam (EB) of doses 30, 60 and 90 kGy have been investigated by Electron spin resonance (ESR), Fourier transform infrared spectroscopy, Differential scanning calorimetry, Scanning electron microscope and Spectrophotometer ...
Read More
Thermal, morphological and antioxidant properties of lignin irradiated with electron beam (EB) of doses 30, 60 and 90 kGy have been investigated by Electron spin resonance (ESR), Fourier transform infrared spectroscopy, Differential scanning calorimetry, Scanning electron microscope and Spectrophotometer techniques. ESR studies confirm the presence of poly-conjugated radicals in unirradiated lignin; whereas irradiated lignin posses both poly-conjugated and peroxy radicals. The peroxy radicals decay near the glass transition point on thermal heating while poly-conjugated radicals are stable even up to a temperature of 450K. Presence of conjugated structures is confirmed by the presence of 1604 cm -1 absorption band whose concentration increases following radiation dose. Up to a radiation dose of 60 kGy the fall in glass transition temperature (Tg) is very slow, while at 90 kGy Tg decreased abruptly. The decrease in Tg is assigned to be due to intermolecular chain interactions or plasticization effect. Granular structure of lignin is found to be effected by EB irradiation. Cracks were generated on lignin granules on EB irradiation. Due to increase in poly-conjugation, amorphous nature and granular cracks the antioxidant property is observed to increase. The current research trends in lignin materials include modification of lignin, fabrication of biodegradable thermoset/thermoplastic and use of lignin as stabilizers and dispersants.
Preetam Singh; K. M. K. Srivatsa; Sourav Das
Abstract
Polycrystalline Si (Poly-Si) film with highly crystalline nature, and having most of the grains in the range of 50-100 µm has been grown over biaxially textured Ni-W substrate by Hot-wire chemical vapor deposition technique, using a single buffer layer of CeO2 thin film. This result has been achieved ...
Read More
Polycrystalline Si (Poly-Si) film with highly crystalline nature, and having most of the grains in the range of 50-100 µm has been grown over biaxially textured Ni-W substrate by Hot-wire chemical vapor deposition technique, using a single buffer layer of CeO2 thin film. This result has been achieved for the SiH4 source gas diluted to 95% with added H2 gas, and for the substrate temperature of 840±10oC and a deposition pressure of 40 mTorr. XRD analysis shows that the Poly-Si films have grown with (111) and (200) orientations. Raman studies reveal that a crystalline volume fraction of 95.3% has been achieved. The imaginary part of pseudo dielectric function, <ε2>, as extracted from ellipsometric data, shows two prominent shoulders at energy positions 3.4 eV and 4.2 eV corresponding to the optical absorption of crystalline Si, indicating a high crystallinity of the Poly-Si film. SEM micrograph shows that the grown Poly-Si film is following the morphology and grain size as that of biaxially textured Ni-W substrate. SIMS analysis of the total multilayer structure shows a formation of very sharp interfaces, with no diffusion between Si and Ni, indicating that a single buffer layer of CeO2 is sufficient to avoid the formation of nickel silicide while growing Si over Ni substrate. Thus, these results are very encouraging for the fabrication of Poly-Si film based solar cells with increased efficiency by minimizing the undesired recombination of charge carriers at grain boundaries.