M. Sivaprasad; N. Y. Sreedhar; M. R. Jayapal; Li Yang; Hongwei Ni
Abstract
Herein we reported graphene (Gr) was firstly fabricated on glassy carbon electrode (GCE) by drop casting method, subsequently polyaniline (PAN) and Palladium (Pd) nanocomposite were fabricated by two-step electrochemical depositing process on graphene dispersed glassy carbon electrode (Gr/GCE) ...
Read More
Herein we reported graphene (Gr) was firstly fabricated on glassy carbon electrode (GCE) by drop casting method, subsequently polyaniline (PAN) and Palladium (Pd) nanocomposite were fabricated by two-step electrochemical depositing process on graphene dispersed glassy carbon electrode (Gr/GCE) and used as an electrochemical sensor for determination of Tetrachlorvinphos (TCP < /span>) pesticide in vegetables. Here most of the work has been focused on the preparation and characterization of modified electrode with cyclic voltammetry (CV) and scanning electron microscopy (SEM). The modified composite electrode unveiled significantly good voltammetric response on TCP. Square wave voltammetry (SWV) was used for determination of TCP at optimized conditions such as square wave frequency, step potential, pH of buffer, applied sample volume, accumulation potential and accumulation time. The well-defined reduction (C=C) peaks were acquired over the potential maximum around at -1.3V in acidic medium in Briton-Robinson (B-R) buffer solution at low current values. The low current peaks were obtained over the concentration of TCP at 1.5×10 -6 M with lower detection limit and limit of quantifications are 5.62×10 -10 M and 2.65×10 -8 respectively. The composite modified electrode showed good stability and reproducibility. The proposed method was successfully applied for the present investigation with a great assure as an economical and simple sensor with furthermore a shorter analysis time and further the sensor also used for heavy metal detection in real samples.
Rajesh W Raut; Bandopant T Nikam;Sahebrao B Kashid; Ansari Sana Mohd. Haroon; Yuvraj S Malghe
Abstract
The fabrication of metal nanoparticles is undergoing the revolutionary changes due to their widespread applications in the areas like selective and specific catalysis such as hydrogenation, optoelectronics, semiconductor, sensing and diagnosis. Biologically, the metal nanoparticles are produced using ...
Read More
The fabrication of metal nanoparticles is undergoing the revolutionary changes due to their widespread applications in the areas like selective and specific catalysis such as hydrogenation, optoelectronics, semiconductor, sensing and diagnosis. Biologically, the metal nanoparticles are produced using fungi, yeasts, bacteria, algae and plant biomass. The metal nanoparticles synthesized using biological methods include mainly silver and gold. The synthesis of metals like platinum and palladium is still unexplored. In this context we have synthesized Platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. at room temperature. The synthesized metals were characterized using UV-visible spectroscopy, Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV) techniques. UV-Visible study revealed that in both cases nanoparticles are produced within 5 min. TEM study shows that metal nanoparticles formed are crystalline in nature and spherical in shape. It also shows that Pt and Pd nanoparticles are nearly monodispersed and having a particle size ranging between 1 to 6nm. CV of the metal nanoparticles shows reversible redox behavior. The method reported for the synthesis of metal nanoparitcles is clean, rapid and ecofriendly.