Keisham Radhapyari; Raju Khan
Abstract
Electrochemical biosensor is an effective tool for pharmaceutical analysis due to its simplicity, specificity, sensitivity, fast, cost-effective and repetitive measurements with miniaturized and portable devices. The paper illustrates the detail methodology for development of an amperometric biosensor ...
Read More
Electrochemical biosensor is an effective tool for pharmaceutical analysis due to its simplicity, specificity, sensitivity, fast, cost-effective and repetitive measurements with miniaturized and portable devices. The paper illustrates the detail methodology for development of an amperometric biosensor based on polyaniline-gold nanocomposite film modified horseradish peroxidase for anticancer drug gemcitabine in bulk and in parenteral formulation. Scanning Electron Microscopy, Cyclic Voltammetry, Fourier Transform Infra Red Spectroscopy and Electrochemical Impedance Spectroscopic studies of the electrodes and after immobilizing of HRP shows the successful formation of a selectivity of the electrode. The proposed polyaniline-gold nano-composite based biosensor allow quantitation over the range 0.10 to 1.10 ngmL −1 with detection limit of 0.031 ngmL −1 , biosensor sensitivity of 2.934 µAng mL -1 has distinct advantages over other existing methods. Precision and accuracy were also checked and were within the limits. The procedure has been applied to the assay of the drug in dosage form with mean percentage recoveries of 99.00±0.08%. The suggested biosensor method can be successfully applied to the detection and determination of anticancer drug gemcitabine in different drug formulations.
B.S. Bhau; Sneha Ghosh; Sangeeta Puri; B. Borah; D.K. Sarmah; Raju Khan
Abstract
Synthesis of nanoparticles from various biological systems has been reported, but among all, biosynthesis of nanoparticles from plants is considered as the most suitable method. The use of plant material not only makes the process eco-friendly but also the abundance makes it more economical. The aim ...
Read More
Synthesis of nanoparticles from various biological systems has been reported, but among all, biosynthesis of nanoparticles from plants is considered as the most suitable method. The use of plant material not only makes the process eco-friendly but also the abundance makes it more economical. The aim of this study was to investigate the ability of this plant to synthesis gold nanoparticles and study the properties of the nanoparticles thus produced. Antimicrobial activity and medicinal values of Nepenthes khasiana fascinated us to utilize it for biosynthesis of gold nanoparticles. The synthesized gold nanoparticles were characterized by UV-vis spectrophotometry, Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infra-red Spectroscopy and Transmission Electron Microscopy. Different time intervals for the reaction with aqueous chloroauric acid solution increase in the absorbance with time and became constant giving a maximum absorbance at 599.78 nm at three hours of incubation. The results from XRD, TEM and SEM supports the biosynthesis of triangular and spherical shaped Gold nanoparticles between 50nm to 80 nm. In this study, the antimicrobial property of the AuNPS was exploited against human pathogenic micro-organisms. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of N. Khasiana can be used to produce Gold nanoparticles with significant amount of antimicrobial activity.
Keisham Radhapyari; Raju Khan
Abstract
An amperometric sensor for detection of toxin aflatoxin B1 from aspergillus flavus based on conducting polyaniline probe using monoclonal anti-aflatoxin B1 (Mc-IgGs-a-AFB1) antibodies after activation with 3% Bovine Serum Albumin (BSA) through electrochemical polymerization has been proposed. The electrode ...
Read More
An amperometric sensor for detection of toxin aflatoxin B1 from aspergillus flavus based on conducting polyaniline probe using monoclonal anti-aflatoxin B1 (Mc-IgGs-a-AFB1) antibodies after activation with 3% Bovine Serum Albumin (BSA) through electrochemical polymerization has been proposed. The electrode was fabricated by immobilizing Mc-IgGs-a-AFB1 antibodies molecules onto electrode surface and characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM) and fourier transform infrared spectroscopic (FT-IR) etc. The proposed amperometric immune-sensor has demonstrated excellent electro-analytical properties relative to Aflatoxin B1 in a linear range from 0.20 to 1.30 AngmL -1 with a relatively low detection limit of 0.059 AngmL -1 . The present study will help in improving for quantitative determination of mycotoxins in food samples may provide significant improvements in quality control of food safety through a simple, rapid, and sensitive testing system for agricultural products monitoring.