Pankaj Srivastava; Avaneesh Kumar; Neeraj K. Jaiswal; Varun Sharma
Abstract
We have investigated the electronic and structural properties of pristine Zinc-blende type InP nanowires (NWs) by using ab-initio approach. We have considered the effect of phases by taking NWs of 7 Å radii in three phases viz. (100), (110), (111). It is revealed that the electronic properties ...
Read More
We have investigated the electronic and structural properties of pristine Zinc-blende type InP nanowires (NWs) by using ab-initio approach. We have considered the effect of phases by taking NWs of 7 Å radii in three phases viz. (100), (110), (111). It is revealed that the electronic properties of NWs are highly affected by the wire phases. NW in (100) phase is found to be semiconducting with an indirect band gap of 0.71 eV whereas it becomes semi-metallic and metallic in other two phases. Thus, the nature of nanowires is observed as a function of NW phases. Further, energetic feasibility of InP NWs strongly dependent on their growth phase.
Pankaj Srivastava; Subhra Dhar; Neeraj K Jaiswal
Abstract
We investigate Ag atom bonding to zigzag graphene ribbons and properties of these systems to increase the understanding of spin transport. Results concerning the total energies preferred binding sites, equilibrium distances, and electronic character for Ag adatoms on ZGNR are predicted in this study. ...
Read More
We investigate Ag atom bonding to zigzag graphene ribbons and properties of these systems to increase the understanding of spin transport. Results concerning the total energies preferred binding sites, equilibrium distances, and electronic character for Ag adatoms on ZGNR are predicted in this study. The study also provides insight into the diffusion kinetics of adsorbed Ag atoms on zigzag edged graphene nanoribbons. The ribbons considered in the present work have an antiferromagnetic ground state and undergoes transition from semiconducting to half-metallic on spin polarization. DOS profiles of Ag-adsorbed ZGNR at the bridge site reveals low DOS across the Fermi level ensuring its semiconducting character, validated from the unpolarized spin calculations. Though nonlinear at biases less than 1V in the FM and AFM calculations, the spin current of atop adsorbed ribbon increases rapidly with the increase of the bias voltage beyond 1V.
Pankaj Srivastava; Yamini Sharma
Abstract
Transparent conducting oxide CdO has a wide range of applications in optoelectronics. We present the results of electronic and optical properties of pure and transition metal ions Sc, Y and Ti-doped CdO. The electronic structure is calculated within the full-potential linearized augmented plane wave ...
Read More
Transparent conducting oxide CdO has a wide range of applications in optoelectronics. We present the results of electronic and optical properties of pure and transition metal ions Sc, Y and Ti-doped CdO. The electronic structure is calculated within the full-potential linearized augmented plane wave (LAPW) + local orbitals (lo). The calculated band gap for pure CdO is 0.51 eV and changes significantly with doping. The calculated bandgap for Sc-doped CdO (CSO) is 2.67 eV, for Y-doped CdO (CYO) is 2.93 eV, and for Ti-doped CdO (CTO) is 2.53 eV. The effect of doping is clearly seen in the optical absorption profiles as well as in the enhanced electrical conductivities. Due to the widened optical transparency window, doped TCO has nearly 75-80% transmittance in the optical region. There is possibility of greater multiple direct and indirect interband transitions due to availability of more states compared to pure CdO.