Jai Prakash; A. Tripathi; G. B. V. S. Lakshmi; V. Rigato; Jalaj Tripathi; D. K. Avasthi
Abstract
Thin metal films of Ag (~10 nm) deposited on spin coated PVC film on quartz substrate, were irradiated with 150 keV Ar ions at fluences varying from 5×10 15 to 5×10 16 ions/cm 2 and characterized with Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron ...
Read More
Thin metal films of Ag (~10 nm) deposited on spin coated PVC film on quartz substrate, were irradiated with 150 keV Ar ions at fluences varying from 5×10 15 to 5×10 16 ions/cm 2 and characterized with Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques. RBS spectra show sputtering of the Ag film. As a result of ion irradiation, isolated Ag nanoparticles are formed on the surface. The size and size distribution of Ag nanoparticles are found to be dependent on ion fluence. Contact angle measurements were carried out to study the hydrophilic nature of the surface at varying fluences. Results are explained in the framework of sputtering from the surface due to dense collision cascade resulting from Ar ion and Ag/PVC film interaction.
Jai Prakash; A. Tripathi; J.C. Pivin; Jalaj Tripathi; A.K. Chawla; Ramesh Chandra; S.S. Kim; K. Asokan; D.K. Avasthi
Abstract
The present work envisages synthesis of magnetic nanocomposites by ion beam mixing technique using swift heavy ion irradiation of Ni-Teflon bilayer system and its magnetic characterizations. The nanocomposite is characterized by Rutherford backscattering spectrometry (RBS), transmission electron microscopy ...
Read More
The present work envisages synthesis of magnetic nanocomposites by ion beam mixing technique using swift heavy ion irradiation of Ni-Teflon bilayer system and its magnetic characterizations. The nanocomposite is characterized by Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM), scanning probe microscopy (SPM) and superconducting quantum interference device (SQUID) magnetometer. Cross-sectional TEM and magnetic force microscopy (MFM) results confirm the formation of nanocomposite. Magnetic characterizations reveal that nanocomposite exhibits ferromagnetic behavior with an increase in the coercivity, which is attributed to the formation of Ni nanoparticles. The coercivity of the nanocomposite is found to be 112 Oe at room temperature which is two orders of magnitude larger than that of the bulk Ni (0.87 Oe).