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Abstract 

The ability to perform a remote sensing of glucose in the blood stream can be very applicable. The novel method presented 

in this paper is based on two optical approaches both based on the extraction and analysis of the changes in the collected 

speckle field. The first physical effect used for the detection is the temporal changes of the back scattered secondary 

speckles produced in the skin due to the changes of the blood stream parameters as a function of the glucose concentration 

in the blood. These cardio related changes can be analyzed with different machine learning algorithms to enhance the 

sensitivity of the measurements. The second physical effect assisting in performing the remote glucose sensing is the 

Faraday rotation effect in which the polarization of linearly polarized light is rotated when scattered from materials 

exhibiting this effect while being exposed to a magnetic field. Copyright © 2018 VBRI Press. 
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Introduction  

Noninvasive glucose monitoring refers to the 

measurement of blood glucose levels without drawing 

blood, puncturing the skin, or causing pain or trauma to 

the patient. Most of noninvasive glucose monitoring 

methods are based on measuring blood glucose using 

transdermal measurements. These methods attempt to 

pull glucose through the interstitial fluid using either 

chemicals, electricity or ultrasound. The interstitial fluid, 

which surrounds cells including those of the skin and 

provides a reservoir of nutrients including glucose, is 

very close to the exterior of the body, only 0.01mm 

below the surface of the skin. Thus, absorption of infra-

red light, may allow measuring glucose levels [1].  

As of 2014, there have been very few noninvasive 

glucose meters, that are being marketed in several 

countries. Measurement of glucose levels in interstitial 

fluid is currently available in the form of continuous 

glucose monitors (CGMs), however, these are invasive 

devices which require having a sensor implanted below 

the surface of the skin. 

The search for noninvasive glucose monitoring began 

after 1975 and has continued till present days without a 

clinically or commercially viable product. As of 1999, 

only one such product, the GlucoWatch automatic 

glucose biographer (Cygnus Inc), had ever been 

approved for sale by the FDA. It was based on a 

technique for electrically pulling glucose through intact 

skin. It was withdrawn after a short time owing to poor 

performance and some damage to the skin [2]. 

One major method for remote monitoring of glucose 

is infrared spectroscopy [3]. This method measures 

glucose through the skin using light of slightly longer 

wavelengths than the visible region. It is based on using 

transdermal measurement for measuring the amount of 

polarized light that is rotated by glucose in the front 

chamber of the eye (containing the "aqueous humor"). 

Other examples include bio-impedance spectroscopy 

[4], electromagnetic sensing [5], fluorescence 

technology [6], mid-infrared spectroscopy [7], optical 

coherence tomography [8], optical polarimetry [9], 

Raman spectroscopy [10], ultrasound technology [11] 

and photoacoustic spectroscopy [12]. Concluding with 

the observation that none of these had produced a well 

commercially, clinically reliable device and therefore, 

much work remained to be done. 

In this paper, using a new and patented approach [13-

15], we present a new technique for remote measuring of 

glucose. The described method includes a combination 

of 2 different effects. The first indirect effect consists of 

illumination of the human skin, which is close to a blood 

artery, with a laser beam. The back scattered light from 

the skin near the blood artery creates a secondary speckle 

patterns. These self-interference random patterns (i.e. 

speckle patterns) movement are due to the blood pulse 

stream changes that can be extracted [16 - 20]. Various 
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bio-parameters can be monitored from the blood flux 

pulsation. Using machine learning algorithms and 

trading process of the detected signals, the glucose 

concentration can be extracted. The second direct effect 

includes the Faraday rotation effect which is the rotation 

of the plane of vibration of linearly polarized light when 

passing through a medium exhibiting this effect [21]. 

Changing the polarization state of the wavefront will 

cause the speckle patterns to change as shown in Ref.  

[22]. To minimize the mechanical noise, short magnetic 

pulses in a sense of mechanical rise time were generated. 

The innovation presented in this magneto – optic effect 

is the AC short pulses of the magnetic field that can 

better isolate the signal related to the glucose form the 

noise associated with the natural mechanical vibrations 

of the setup. Thus, in addition to other proved effects, 

this technique increases the observability of the 

relatively small magneto-optic effect. 

 

Remote indirect optical measurement of glucose 

concentration  
 

Theoretical explanation 

The optical setup consisted of: (a) an eye safe 780nm 

laser and (b) a camera (Basler acA1920-25um, 

monochrome). The camera captures the speckle images 

at 300 frames per second (fps). The distance from the 

laser to the subject’s leg was approximately 90cm. First, 

a big spot pattern was illuminated on the subject’s leg. 

Later, the big spot was divided to 25 spatial sub-spots to 

perform the numerical analysis. Mathematically the light 

distribution can be expressed as follows: 
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where  is the random phase generated by the skin 

roughness, λ is the illuminated wavelength (532nm) and 

Z is the axial distance to the imaging plane. β expresses 

the skin tilting movement due to blood pulse stream:  

4 tan 



                                   (2) 

where α is the skin tilting angle. To sense the tilting 

movement, the image captured by the camera was 

strongly defocused. Thus, the imaging plane was moved 

to the far field regime as explained in Ref [13], therefore, 

the tilting movement can be expressed as follows:  
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(3) 

 Using a simple correlation based algorithm, the 2-D 

movement of the blood vessels can be extracted. 

Temporal movement of the reflecting surface causes 

changes to the random speckle pattern over time due to 

the temporal change in its tilting angle. In the first step, 

a set of images as a function of time was captured. In the 

second step, the sequential 2-D row data is correlated. 

The relative movement of patterns can be extracted using 

a 2-D correlation. The position of the correlation peak 

over time expresses this relative tilting movement. The 

temporal movement of the speckle is caused by the blood 

flow changes. This signal presents an optical 

phonocardiogram (OPG) signal as shown in Fig. 1. 

 

Fig. 1. An example for an OPG signal from the leg. 

 

 The next step is to use the map of the OPG signals 

(5x5) as shown in Fig. 2 for machine learning algorithms 

such as random forest to extract the glucose 

concentration trend. Summary of the presented process 

is presented in Fig. 3. 

 

Fig. 2. Schematic sketch of the presented configuration. 

 

Fig. 3. Summary of the presented process. 

 

Machine learning analysis  

Glucose levels were taken from the subject after 12 hours 

of fasting. The units of glucose concentration levels are 

given as mg/dl, hence a calibration between the optical 

reults to the reference device was calculated. In this 
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experiment the sensor was measuring the back reflected 

patterens from the subject’s leg main blood artery area. 

To retain only signals of good quality, pre-processing 

recordings were preprocessed. Each 10 minutes, a blood 

sample from a finger was taken to measure the glucose 

concentration with a glucometer (FreeStyle Lite Blood 

Glucose Monitoring System). First, the subject was 

measured with the optical method as well as with the 

reference device before drinking a sweetend drink. 

Afterwards the subject drank 500 ml of a sweetened 

drink. The ingredients of this drink are shown in  

Table 1. 
 

Table 1. Nutritional ingredients of the sweetened drink. 

 Quantity Units 

Energy 195 Calories 

Carbohydrates 50 G 

Sodium 50 mg 

Vitamin C 30 mg 

 

 During the tests, 5 different levels of glucose were 

measured. During the first step of the machine learning 

procecing using random forest alghorithem, a training of 

the alghorethem was performed. During the tests, 10% 

of the samples from each glucose level was randomally 

chosen for training using random forest clasifier with 50 

trees. Later, using the training process, the signals were 

tested to predict the glucose concentration value. One 

can see in Fig. 4 the predication of each illuminating 

laser spot seperatlly. The percentage of each spot OPG 

good quality signals is also shown in the following  

Fig. 4. 

 

Fig. 5. Two tests of glucose prediction using the presented method. The 

tests are denoted by (a) and (b). The graphs show predicted values 
denoted by blue dots with respect to real glucose values denoted by 

green lines. 

 

 Summary of 2 glucose test are shown in Fig. 5. 

These tests include all the test samples from all of the 

spots. The percentage of the signals that passed the 

quality test is also shown in Fig. 5. One can see the good 

predication using the presented method. 

 During the second part (Fig. 6) of these tests, the 

subject drank the same amount of water without glucose. 

Is is shown that during the first test  (i.e glucose test) 

there is an increase in the measured distribution 

corresponding to real value of the glucose concentration 

in the blood stream. However, as expected, during the 

second experiment (i.e. the water test) there is no change 

of the predicted values. The aim of the water test is to 

demonstrate that the technique is not effected by the 

changes in the volume of the blood, due to the addition 

of the drinking water, but rather the variation sin the 

measured values are indeed due to the modification in 

the glucose level in the blood stream.  

 
Fig. 4. A prediction map of each spatial illuminating laser spot. Each spot presents a different location next to the subject’s leg main blood artery. 

The graphs show predicted values denoted by blue dots with respect to real glucose values denoted by green lines. 
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Fig. 6. A graph of a water test. During this test, the subject drank only 

water without glucose. The graph shows predicted values denoted by 

blue dots with respect to real glucose values denoted by green lines. 

 

Remote optical measurement of glucose 

concentration – magneto-optic effect 
 

Theoretical explanation 

As shown in Ref. [22], a change of a wavefront 

polarization state can be caused by the glucose 

concentration changes. In magneto-optic materials 

polarization will be rotated according to the following 

expression: 
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                           (4) 

Where   is Verdet constant, B is the magnetic field and 

L is the interaction length, λ is the optical wavelength 

and n  is the difference in the index of refraction 

between two circularly polarized states leading to the 

rotation. Verdet constant is defined as [23]: 
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while α is the angular rotation, l is the length path 

through the substance, H is the intensity of the magnetic 

field and   is the angle between the magnetic field and 

the path of the light. As proven in Ref. [22] the minimal 

magnetic field Bmin that will de-correlate the speckle 

field is proportional to: 

                         
minB L R                                   (6) 

while R is the radius of the illuminating beam and L is 

the interaction length. It was shown in Ref. [15] that 

sensitivity of the glucose measurement can also be 

improved with an AC magnetic field due to the lock-in 

amplification while magnetic square wave at specific 

frequency was generated.  However, the main 

disadvantage of this method is the vibrations noise at the 

same frequency of the magnetic field. To enhance the 

sensitivity of our measurement, a magnetic field with 

short pulses was generated. These short pulses are 

smaller than the rise time of the mechanical vibrations 

but bigger than the rise time of the magnetic field. 

Schematic sketch of the pulse design is shown in the 

following Fig. 7. The aim of this innovation is to increase 

the SNR of the measured signal.  

 

 

Fig. 7. Short pulses generation with respect to the mechanical rise time. 

 

Multiple linear regression method  

The experimental optical remote configuration is shown 

in Fig. 8. The configuration consists of a camera 

(PixelLink PL-E531) which captures images of the time 

varied speckle patterns at 2000 fps, an eye safe 532nm 

laser, a polarizer and a filter. The coil generated 

magnetic short pulses of 1ms at 120Hz and the detected 

AC magnetic field was at strength of 100 Gauss 

(measured by Gaussmeter, AlphaLab, GM2). Each 

glucose sample consisted of 1% of intra lipid (IL), 1% of 

agarose and different concentrations of glucose. Each 

glucose sample was made in a cuvette that was inserted 

inside the coil.   

 
Fig. 8. The remote configuration for the magneto optic effect. 

 

 One can see in Fig. 9 an example for the frequency 

response corresponding to 1ms sec magnetic field pulses 

at repetition rate of 120Hz (the pulses are shown in  

Fig. 7). The frequency response is presented in the Y axis 

in pixels units (shifts of the speckle pattern in cameras 

pixels units). 

 

Fig. 9. The frequency response of 1ms magnetic pulses at a repetition 

rate of 120Hz. 
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 To extract the glucose concentration value, a 

multiple linear regression processing was used. This 

process was calculated according to the equations 

presented in Ref. [24]. During these measurements, 5 

different glucose concentrations were examined: 1%, 

0.5%, 0.25%, 0.15% and 0.05%. Each sample was 

measured 3 times. For this calculation, the frequency 

response of X axis and Y axis at the excitation frequency 

were calculated during this process. The results are 

shown in Fig. 10. One can see the predicted value 

according to the suggested regression process. 

 

Fig. 10. The glucose prediction values according to multiple linear 
regression process. 

 

Conclusions 

This paper presents the first steps towards developing a 

module for continuous and non-invasive detection of 

glucose concentration trends using two approaches. The 

first one is an indirect approach, that extracts the glucose 

trends via the blood stream changes while applying 

machine learning algorithms. The aim of the second 

approach is to find a direct effect of the glucose on the 

detected speckle pattern using magneto-optical 

phenomena. This paper shows the ability to extract a 

frequency response at the excitation frequency using low 

mechanical noises. However, this approach decreases 

the magnetic field, therefore, a configuration with high 

magnetic field and low acoustic noise should be 

designed. Translation of the optical readout into the 

exact value of the estimated biomedical parameter using 

a robust device is also required. The glucose test showed 

the preliminary feasibility of detecting trends in the 

glucose concertation remotely with low acoustic noise. 
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