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Abstract 

A novel algorithm for designing the values of the technological parameters for the production of soft magnetic composites 

(SMCs) was created. These parameters are the hardening temperature T and the compaction pressure p. These parameters 

enable us to optimize the power losses and magnetic induction. The advantage of the presented algorithm lies in bi-criteria 

optimization. The crucial role played by the presented algorithm is scaling, pseudo equation of state and fixed point. On this 

basis, mathematical models of power losses and magnetic induction were created. The model parameters were calculated on 

the basis of the power loss characteristics and hysteresis loops. The created optimization system was applied to specimens of 

Somaloy500. The obtained output consists of a finite set of feasible solutions. To select a unique solution, an additional 

criterion was formulated. Copyright © 2017 VBRI Press. 
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Introduction 

Soft magnetic composites (SMCs) have physical 

properties that are used for adapting these materials to 

specific applications [1], [2]. Highly often, the 

functionality of these materials depends on more than one 

feature. This dependence leads to multi-criteria 

optimization problems, which has not been applied yet in 

the design of SMCs. However, there are papers that treat 

more than one physical property of SMCs, but these are 

not considered to be target functions in an optimization 

procedure [3], [4].  

Recently, an algorithm for designing the values of the 

hardening temperature and the compaction pressure in the 

production process of soft magnetic composites (SMCs) 

has been derived using the concept of the pseudo-state 

equation [5]. In equilibrium thermodynamics, the 

equation of state describes the relationships among the 

thermodynamic parameters. For example, in the case of a 

gas-liquid system, the temperature, pressure and volume 

of the considered material are the relevant parameters. By 

analogy with the equation of state, we consider a 

phenomenological relationship between the technological 

parameters and physical properties of the material. Such 

an approach for SMCs is possible due to the topology of 

the completed set of scaled power loss characteristics.  

 

Topology of characteristics space 

The most important features of characteristics topology 

are the following [5]. The set of characteristics consists of 

one variable smooth functions, 

𝑃𝑡𝑜𝑡

(𝐵𝑚)𝛽
= 𝐹 (

𝑓

𝐵𝑚
𝛼

),                                                               (1)  

 

where 𝑃𝑡𝑜𝑡 is the density of power loss, 𝐵𝑚 is the peak of 

magnetic induction, f is the frequency of the 

electromagnetic field wave, and 𝐹(∙) is a function of the 

following form [5], 

 

𝐹 (
𝑓

𝐵𝑚
𝛼 ) =

𝑓

𝐵𝑚
𝛼 ∙ (Γ1 +

𝑓

𝐵𝑚
𝛼 ∙ (Γ2 +

𝑓

𝐵𝑚
𝛼 ∙ (Γ3 +

𝑓

𝐵𝑚
𝛼 ∙ Γ4)))    (2) 

 

where, Γ𝑖,   𝛼 and 𝛽 must be determined from experimental 

data. The form (1) has been derived from the assumption 

regarding the power losses as a homogeneous function in 

a general sense. Each characteristic is determined by the 

values of Γ𝑖 coefficients and both the 𝛼 and 𝛽 exponents. 

These characteristics are functions of the technological 

parameters T and p by the following relations, 

 

Γ𝑖 = Γ𝑖(𝑇, 𝑝), 𝛼 = 𝛼(𝑇, 𝑝), 𝛽 = 𝛽(𝑇, 𝑝),                         (3) 

 

where, T and p are hardening temperature and compaction 

pressure, respectively (1)-(3) reveal that characteristics of 

the samples composed at different T and p conditions 

possess different dimensions, whereas all the disentangled 

characteristics, 
 

𝑃𝑡𝑜𝑡 = (𝐵𝑚)𝛽 𝐹 (
𝑓

𝐵𝑚
𝛼

)                                                           (4) 
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possess a common physical dimension. Why do we use 

the implicit form (1)-(2). Note that the right-hand side of 

this equation depends only on one effective variable 
𝑓

𝐵𝑚
𝛼 . 

Therefore, calculations performed with (1) and (2) are 

represented by one curve for all values of f and 𝐵𝑚, 

whereas the results of the calculations performed with (4) 

are split into many curves. For example, if one requires 

𝑃𝑡𝑜𝑡 as a function of f, then the number of generated 

characteristics is equal to the required number of different 

values of 𝐵𝑚. 

 

Repultion between entangled characteristics  

Let 𝐶ℎ(𝛼1, 𝛽1, Γ𝑖
1) and 𝐶ℎ(𝛼2, 𝛽2, Γ𝑖

2) be the two 

characteristics of the (1)-(2) form, where i=1,2,3,4.  

If 𝛼1 ≠ 𝛼2 or 𝛽1 ≠ 𝛽2then these characteristics  

possess different dimensions. In general case for  

randomly selected values of the parameters 

𝛼1, 𝛽1, Γ𝑖
1 and 𝛼2, 𝛽2, Γ𝑖

2 may correspond to intersecting 

characteristics, see Fig. 2. Intersecting points are singular 

due to different dimensions of the intersecting 

characteristics and they would reject the created here 

formalism. However, if we apply measurement data for 

estimation of the parameters values, then the all 

characteristics intersect only at origin point 
𝑓

𝐵𝑚
𝛼 =0, for 

which the dimension is not very important. If we cut off 

this point then we obtain the space of repealing 

characteristics. Moreover all of the characteristics are 

monotonically increasing functions of 
𝑓

𝐵𝑚
𝛼 .  

According to the Egenhofer theorem [6] the relations 

between characteristics are invariant with respect to 

scaling, translation and rotation. Just the conservation of 

the relations with respect to the scaling enables us to use 

the implicit form of characteristics. According to (3) the 

power loss characteristics are parameterized by pressure 

and temperature. This dependence enables us to introduce 

a measure of distance in the considered space of 

characteristics. Let (𝑇1, 𝑝1) and (𝑇2, 𝑝2) be labels of the 

characteristics of the two composites that have been 

composed under conditions corresponding to these 

pressures and temperatures, respectively. In this case, the 

distance between these characteristics has the following 

general form: 
 

𝜌(𝑇1, 𝑝1; 𝑇2, 𝑝2) = √(𝜏2 − 𝜏1)2 + (𝜋2 − 𝜋1)2,    (5) 

 

where, 𝜏𝑖 =
𝑇

𝑇𝑐
 and 𝜋𝑖 =

𝑝

𝑝𝑐
 are dimensionless 

temperatures and pressures, respectively. Where 𝑇𝑐 and 𝑝𝑐 

are scaling parameters. Both 𝑇𝑐 and 𝑝𝑐 belong to 

optimization parameters’ set. For the corresponding 

values of 𝑇𝑐 and 𝑝𝑐 see Table 2. 

Therefore, the set of all characteristics constitutes the 

metric space. The introduced metric (5) has enabled us to 

ring-fence the two compact sets [5]. Each compact set 

corresponds to a physical phase that is defined by 

characteristic values of the physical parameters. For 

example, in [5], we considered the low and high-loss 

phases of SOMALOY500.    

 
 

Fig. 1. System obeying scaling and Self-similar one. Five loss 

characteristics for T<500 ℃ corresponding to the low-loss phase and the 

one characteristic for T=600 ℃ corresponding to the high-loss phase. 
 

 
 

Fig. 2.  System obeying scaling, however not Self-similar one. Example 
of not physical losses characteristics obtained for randomly chosen 

values of the model parameters.  

 

All of the properties mentioned above are visible in    

Fig. 1 and they enable us to introduce a measure of power 

loss𝑉(𝑇, 𝑝), which is the average of the characteristics 

with respect to 
𝑓

𝐵𝑚
𝛼  [5]: 

 

𝑉(𝑇, 𝑝) =
1

𝜑𝑚𝑎𝑥−𝜑𝑚𝑖𝑛
∫

𝑃𝑡𝑜𝑡

𝐵𝑚
𝛽

𝜑𝑚𝑎𝑥

𝜑𝑚𝑖𝑛
 𝑑 (

𝑓

𝐵𝑚
𝛼 )                (6) 

 

Note that the dimension of the denominator in front of the 

integral and the dimension of integration limits cancel 

themselves out. 

During the last decade, we have collected many 

experimental data confirming the revealed properties [7]. 

Basing on these data we conclude that repulsion of 

characteristics of scaled losses in soft magnetic materials 

as well as in soft magnetic composites is a low of the 

nature. This low injures the topological structure of scaled 

characteristics set which enable us to construct 𝑇, 𝑝  
dependent losses’ measure (6). 
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Experimental data 

Specimens were produced by cold pressing under 

pressures of 500…900 (MPa). The specimens made of 

SOMALOY500 powder were cured at a temperature of 

400…600(℃) for 30 minutes in air atmosphere. 

The specimens used in the experiments were ring-

shaped with a square cross-section. The specimens had 

the following dimensions: external diameter = 55 (mm), 

internal diameter = 45 (mm) and thickness = 5 (mm). 

The total power loss density 𝑃𝑡𝑜𝑡, expressed in watts per 

kilogram (W/ kg), was obtained from measurements of 

the AC hysteresis cycle according to IEC Standard 60404-

6 using the system AMH-20K-HS produced by 

Laboratorio Elettrofisico Walker LDJ Scientific. The total 

power losses 𝑃𝑡𝑜𝑡 were measured at a maximum flux 

density of 𝐵𝑚 = 0,1…1,3 (T) over a frequency range of 10 

to 5000 (Hz). During the measurements of the total power 

losses 𝑃𝑡𝑜𝑡, the shape factor of the secondary voltage was 

equal to 1,111±1.5 %. The maximum measurement error 

of the total power losses was equal to 3%. 

To optimize the magnetic properties, the magnetic 

inductions B at fixed magnetic field H equal to 1000 

(A/m) were determined. These values were obtained from 

measurements of the DC magnetization curve according 

to IEC Standard 60404-4 using the same measuring 

system.  

 

Power losses and magnetic induction pseudo-equations of 

state 
 

Optimization of the power losses was based on the 

topological properties of the characteristics. However, in 

the case of the magnetic properties, the situation is 

considerably simpler. For optimization of the magnetic 

properties we selected magnetic induction 𝐵1000 for the 

fixed magnetic field 𝐻 = 1000(
A

m
). As we have 

mentioned, we chose this value because the magnetic 

permeability of the soft magnetic composites reaches a 

maximum value at approximately this magnetic field. 

We expected that the pseudo-equation of state would 

properly describe magnetic induction at this point as a 

function of T and p. In the previous paper [8], it was 

assumed and confirmed that the loss measure V obeys the 

scaling. Here, this assumption was extended to magnetic 

induction. To justify this assumption, we referred to two 

phenomena: invariance of the power losses (area of the 

hysteresis loop) with respect to scaling and invariance of 

the hysteresis loop with respect to scaling [6]. Therefore, 

for the bi-criteria optimization problem, minimization of 

the power losses and maximization of the magnetic 

induction for a fixed magnetic field, we used the 

following pseudo-equation of state of general form: 

 

V(T, p) = (
𝑝

𝑝𝑐
)

𝛾

∙ Φ(𝑋);                       (7) 

𝐵1000(𝑇, 𝑝) = (
𝑝

𝑝𝑐
′)

𝛾′

Λ(𝑋′).                   (8) 

where, Φ(∙) and Λ(∙) are arbitrary functions to be 

determined, and   

𝑋 =

𝑇

𝑇𝑐

(
𝑝

𝑝𝑐
)

𝛿 ;                                               (9) 

𝑋′ =

𝑇

𝑇𝑐
′

(
𝑝

𝑝𝑐
′ )

𝛿′   .                                             (10) 

where, 𝛾, 𝛾′, 𝑇𝑐′, 𝑝𝑐
′ 𝛿, 𝛿′  are free parameters to be 

determined.  

In the case of the power losses' pseudo-state equation, 

all calculations concerning the modeling of Φ(∙) and the 

fitting of the scaling exponents as well as model 

parameters, were performed in [5]. The most important 

result was the derivation of an infinite set of solutions for 

the technological parameters that minimized the power 

losses, 
 

 

𝑇

𝑇𝑐

(
𝑝

𝑝𝑐
)

= 19,75.                                              (11) 

 

Pseudo-equation of state for magnetic induction 𝐵1000  
will constitute a function of the two variables T and p. 

This function and the power losses' pseudo-equation of 

state (7) will enable us to optimize magnetic induction 

and losses together. The optimization criteria are the 

following: find 𝑉 = 𝑉𝑚𝑖𝑛  and 𝐵1000 = 𝐵1000,𝑚𝑎𝑥  with 

respect to T and p. 

Using the form for Φ(∙) [5] and the distance function 

(5), we reveal two phases of Somaloy 500: low loss and 

high loss ones. Therefore, in terms of the magnetic 

induction pseudo-equation of state, we must consider this 

phase separation. The measurement data of 𝐵1000 vs. T 

and p are separated into two subsets which correspond to 

revealed phases, see Table 1.  

 
Table 1. Measure of magnetic induction B_1000 vs. hardening 

temperature and compaction pressure and Measure of power losses vs. 
hardening temperature and compaction pressure.  

 

 

The horizontal line between 𝑉 = 89,28(W kg−1T−𝛽) 

and 𝑉 = 492,3(W kg−1T−𝛽) indicates the crossover 

between the low-loss phase and the high-loss phase. This 

Measure of magnetic 

induction 𝑩𝟏𝟎𝟎𝟎 vs. 

hardening temperature 

and compaction pressure 

Power losses vs. hardening 

temperature and compaction 

pressure.   

T p 𝐵1000 T p V 

(K) (MPa) (T) (K) (MPa) (W kg−1T−𝛽) 

723,15 800 0,378 723,15 800 40,60 

773,15 900 0,496 773,15 900 43,75 

773,15 700 0,483 773,15 700 47,25 

673,15 800 0,335 673,15 800 50,30 

773,15 600 0,467 773,15 600 57,12 

823,15 800 0,546 823,15 800 81,50 

773,15 500 0,414 773,15 500 89,28 

741,15 764 0,425 742,15 764 492,3 

773,15 750 0,489 753,15 780 509,2 

773,15 800 0,504 804,15 764 528,5 

773,15 650 0,469 711,15 764 547,0 

773,15 725 0,467 873,15 800 720,0 

873,15 800 0,568 - - - 



Research Article 2017, 8(6), 689-694 Advanced Materials Letters 
 

Copyright © 2017 VBRI Press                                                                                                               692 
 

transition is clearly visible in the jump of the 𝑉(𝑇, 𝑝) 

function around the separation line [5]. For each phase we 

assume an independent branch of the pseudo-state 

equation in the form of the Padè approximant. To simplify 

the notations, we apply abbreviations defined after 

formula (5). Expressing Λ(∙) in (8) by the Padè 

approximant we derive the following form for the 

magnetic induction pseudo-equation of state, 

 

𝐵1000(𝑇, 𝑝) = (𝜋′)𝛾′ �̃�0+�̃�1𝑋′+�̃�2𝑋′2+�̃�3𝑋′3+�̃�4𝑋′4

1+�̃�1𝑋′+�̃�2𝑋′2+�̃�3𝑋′3+�̃�4𝑋′4  .  (12) 

 

where, �̃�0, … , �̃�4, �̃�1, … , �̃�4 are parameters of the Padè 

approximant Table 2. All parameters have to be 

determined with the data presented in Table 1. The 

corresponding pseudo-equation of state for the power 

losses has been derived in [5]: 

 

𝑉(𝑇, 𝑝) = 𝜋𝛾 𝐺0+𝐺1𝑋+𝐺2𝑋2+𝐺3𝑋3+𝐺4𝑋4

1+𝐷1𝑋+𝐷2𝑋2+𝐷3𝑋3+𝐷4𝑋4  .               (13) 

 

Estimation of the parameters for the magnetic induction 

pseudo-equation of state 
 

The above-mentioned crossover between the low-loss and 

high-loss phases is observed as a sudden change of 𝑉 

between two points: [773,15; 500,0] and [742,15; 764,0] 

in Table 2. However, this effect is not observed in the 

magnetic induction magnitude. Therefore, to have a 

compact description of the power losses and the magnetic 

induction, we take the crossover into account and we 

divide the data of Table 2 into two subsets corresponding 

to the two respective phases. Minimization of 𝜒2 for both 

phases have been performed using Microsoft Excel 2010, 

where, 

 

𝜒2 = ∑ (𝐵1000(𝜏𝑖
′, 𝜋𝑖

′) − (𝜋′)𝛾′ �̃�0+�̃�1𝑋𝑖
′+�̃�2𝑋𝑖

′2+�̃�3𝑋𝑖
′3+�̃�4𝑋𝑖

′4

1+�̃�1𝑋𝑖
′+�̃�2𝑋𝑖

′2+�̃�3𝑋𝑖
′3+�̃�4𝑋𝑖

′4 )
2

𝑁
𝑖=1 ,  (14) 

 

and where 𝑁 = 7. Table 2 presents estimated values of 

the model parameters for the low-loss phase. The pink 

sector of this table corresponds to the power loss’ pseudo-

equation of state, while the blue one corresponds to the 

pseudo-equation of state for magnetic induction.  

 

Optimization of the magnetic induction and power losses 

 

In the optimization of the power loss problem [5], we 

applied low-loss phase solutions, and high-loss phase 

solutions were not considered. However, it is not clear 

whether this simplification excludes important solutions 

for the magnetic induction. The binary relations are 

invariant with respect to scaling [7], [5]. This property 

enables us to present all the scaled characteristics in one 

picture Fig. 3, which allows us to draw the following 

conclusion. All the considered pressure characteristics of 

the high-loss phase are covered by the set of the low- loss 

phase characteristics. Therefore, for further investigations, 

we limit our searching to the low-loss phase. To this end, 

we draw part of the phase diagram of Somali 500 

corresponding to the low-loss phase in Fig. 4 and we 

deliver values of𝐺𝑖 , 𝐷𝑖 , 𝑇𝑐,𝑝𝑐, and𝛾, which are displayed in 

Table 2. 

 
Table 2. Coefficients and exponents of pseudo-equations of state for the 

power losses and for the magnetic induction, pink and blue sectors of the 
table, respectively.  

 
𝜸 𝜹 𝑻𝒄 𝒑𝒄 𝑮𝟎 𝑮𝟏 𝑮𝟐 

1,2812 0,1715 21,622 37,729 37031

5315 

-47752251 17349

52 

𝑮𝟑 𝑮𝟒 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 - 

-

1,3764 

-678,26 170,80 6243,8 386,96 -28,699 - 

𝜸′ 𝜹′ 𝑻𝒄
′  𝒑𝒄

′  �̃�𝟎 �̃�𝟏 �̃�𝟐 

1,114 0,499 32,186 25,849 -

784,41 

764,05 -

276,06 

�̃�𝟑 �̃�𝟒 �̃�𝟏 �̃�𝟐 �̃�𝟑 �̃�𝟒 - 

43,412 -2,431 3,649 2,901 2,837 3,975 - 

 

 
 
Fig. 3. Scaled 𝐵1000 vs. scaled temperature in the low- loss and high 

loss-phases. 

 

 
 

Fig. 4. Scaled 𝑉 vs. scaled temperature in the low-losses phase. 

According to (9) 𝜏 𝜋−𝛿 = 𝑋. 
 

All calculations in this section must satisfy the 

following conditions:18,4 < 𝑋 < 22,9, which based on 

the limitation of the presented calculations to the low-

losses phase presented in Fig. 4. 

The considered bi-criteria problem is formulated  

by the following items: initial value of   𝑉 = 𝑉0,  
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the feasible set of (𝑇, 𝑝)  and the two criteria 𝑉(𝑇, 𝑝) =
𝑉𝑚𝑖𝑛  and𝐵1000(𝑇, 𝑝) = 𝐵1000,𝑚𝑎𝑥. Since increase of 

𝐵1000 causes increase of 𝑉, these conditions are in 

contradiction. Therefore, criterion of the solution should 

be self-consistency between 𝑉𝑚𝑖𝑛 and 𝐵1000,𝑚𝑎𝑥 . Such 

consistency will be achieved as a fixed point of the 

following recurrence procedure. 

Let the maximization and minimization procedures be 

represented by the operators �̂�𝑚𝑎𝑥   and�̂�𝑚𝑖𝑛 , respectively. 

Let 𝑉(𝑇, 𝑝) and 𝐵1000(𝑇, 𝑝)  be functions defined by (12) 

and (13), respectively. In this case, the first step of 

optimization of 𝐵1000(𝑇, 𝑝) and 𝑉(𝑇, 𝑝) can be written in 

the following form, 

 

𝑉(𝑇, 𝑝) = 𝑉0,                   (15a) 

�̂�𝑚𝑎𝑥𝐵1000(𝑇, 𝑝) = 𝐵1000,𝑚𝑎𝑥 for 𝑇 = 𝑇1 and 𝑝 = 𝑝1             (15b) 

𝐵1000(𝑇, 𝑝) = 𝐵1000(𝑇1,𝑝1)                             (16a) 

�̂�𝑚𝑖𝑛𝑉(𝑇, 𝑝) = 𝑉𝑚𝑖𝑛  for 𝑇 = 𝑇2 and 𝑝 = 𝑝2.             (16b)  

 

where, (15a) and (16a) play the role of the constraints for 

independent variables, while the (15b) and (16b) lead to 

the first two approximations of the solutions for 𝑇 and 

𝑝. Therefore, after 𝑛 steps, we obtain, 

𝑉(𝑇, 𝑝) = 𝑉(𝑇2𝑛,𝑝2𝑛),                         (17a) 

�̂�𝑚𝑎𝑥𝐵1000(𝑇, 𝑝) = 𝐵1000,𝑚𝑎𝑥 for 𝑇 = 𝑇2𝑛+1 and 𝑝 = 𝑝2𝑛+1,  (17b)  

𝐵1000(𝑇, 𝑝) = 𝐵1000(𝑇2𝑛+1,𝑝2𝑛+1),                            (18a) 

�̂�𝑚𝑖𝑛𝑉(𝑇, 𝑝) = 𝑉𝑚𝑖𝑛for 𝑇 = 𝑇2𝑛+2 and 𝑝 = 𝑝2𝑛+2.   (18b) 

 Relations (15a)-(18b) generate the two converging 

series 𝑇1, 𝑇2, ⋯ 𝑇2𝑛+2 and 𝑝1, 𝑝2, ⋯ 𝑝2𝑛+2: 

 

lim
𝑖→∞

𝑇𝑖 = 𝑇∗ , lim
𝑖→∞

𝑝𝑖 = 𝑝∗.                           (19) 

where, (𝑇∗, 𝑝∗) constitutes fixed point of (15a)-(18b) 

transformation. Substituting 𝑇∗ and 𝑝∗ to (12) and (13) we 

derive the meshed values of 𝑉and 𝐵1000 

 

𝑉𝑚𝑖𝑛
∗ = 𝑉(𝑇∗, 𝑝∗),   𝐵1000,𝑚𝑎𝑥

∗ = 𝐵1000(𝑇∗, 𝑝∗).         (20) 

 

 
 

Fig. 5. Technological optimum curve presenting the dependence of the 

optimum temperature  vs. the optimum pressure. 

Results and discussion 

Starting from different values of the initial point 𝑉0 we 

have derived series of the fixed points. Optimization has 

been performed via the SOLVER routine of the 

EXCEL2010 program. Fig. 5 and Fig. 6 present these 

results in technological and in physical spaces, 

respectively. The obtained results represented by markers 

are fixed points of the proposed procedure. There is a one 

to-one correspondence between these points in physical 

and technological spaces.  

  To select a unique solution, one must provide an 

additional criterion resulting from a relation between the 

importance of losses and magnetic induction. For 

example, assuming the deepest minimum for the scaled 

measure of losses 𝑉𝜋−𝛾 (Fig. 4) we apply the condition 

given by (11). The intersection of two curves presented in 

Fig. 7, leads to the following single solution:  𝑝 =
382 (MPa)  and𝑇 = 363℃. In the physical space, this 

point corresponds to 𝑉 = 13,64(W kg−1T−β) and 

𝐵1000 = 0,29(T). 
 

 

Fig. 6. Physical optimum curve. Optimum of magnetic induction 

𝐵1000 vs. optimum of losses. 

  

Fig. 7. Reduction of the feasible set of solutions for the technological 

parameters 𝑇, 𝑝  to the single point  𝑇 = 368 (℃), 𝑝 = 382 (MPa). 

Finally, we consider the power loss measure 𝑉. This 

measure is an auxiliary magnitude that helps us to derive 
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values of designing technological parameters due to the 

following features: 
 

(1)  V is a pseudo-thermodynamic average with respect to 

the magnitude created with the peak of the magnetic 

induction and the frequency of the electromagnetic 

field wave. Therefore, 𝑉 includes information about 

both independent variables. 

(2) V depends on the technological parameters. 

 

Conclusion 

We presented novel method for the bi-criteria 

optimization of the chosen physical properties of Soft 

Magnetic Composites. Using this method, we solved the 

problem mentioned in [5], which concerns optimization of 

the losses and the magnetic induction. Achievement of the 

fixed point is interpreted as revelation of equilibrium 

between both assumed criteria. In the presented method 

the crucial roles are scaling, fixed point and the notion of 

pseudo-state equation. The created system is only as good 

as the experimental data, which are used for the 

estimations of the model parameters. Therefore, the first 

version presented here will be improved by forthcoming 

new experimental data. The presented example in this 

paper is a minimum nontrivial case of the Multiphysics 

problem and shows that this approach is suitable for 

designing Magnetic Composites. Therefore, the presented 

algorithm will be extended for more than two physical 

features of the composing material. For example, the 

design of magnetic composites also requires optimization 

of the mechanical properties because; the susceptibility of 

such materials to cracking in service is of fundamental 

concern [9]. During the last decade, we have collected 

many experimental data confirming the revealed 

properties [6]. Basing on these data we conclude in this 

paper, that repulsion of characteristics of scaled losses in 

soft magnetic materials as well as in soft magnetic 

composites is a low of the nature. This low injures the 

topological structure of scaled characteristics set which 

enable us to construct  𝑇, 𝑝  dependent losses’ measure 

(6). We target the derived algorithm to designers of 

SMCs. 
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