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ABSTRACT 
 

The frequencies of optical modes of vibration in a metamaterial slab, contacting with vacuum, are investigated when the slab 
dielectric permittivity and the magnetic permeability show resonant behavior. Retardation effects are included in the no 
radiative zone. On the basis of the linear response theory, we calculate the components of the electromagnetic Green 
propagator. The dispersion curves and the corresponding power spectra are determined from the poles and the imaginary part of 
these components. Two sets of surface polaritonic frequencies are found for transversal electric TE- and transversal magnetic 
TM surface modes, corresponding to bonding and antibonding oscillations of the electric and magnetic fields at the slab 
surfaces. It is shown that for all the range of values in the relation between the resonance frequency of magnetic permeability 
and the resonance frequency of the dielectric permittivity there is one TE and one TM backward mode with negative group 
velocities. This parameter relation determines if the frequency range of TM modes can be separated from the corresponding 
interval for TE modes. Present work can be extended to consider waves in photonic crystals containing anisotropic slabs with 
resonant behavior in the optical properties, which can be useful to design omnidirectional optical filters. Copyright © 2016 
VBRI Press. 
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Introduction  

The study of electromagnetic waves in metamaterials and 
nanostructures has been the subject of considerable interest 

due to their unusual electromagnetic properties [1-4] which 
can be beneficial to design devices with unprecedented 

properties in imaging [5], sensing [6-8], ultrasound 

detection [9] or enhanced energy harvesting [10]. In 
systems containing metamaterials with frequency 

dependence in their dielectric permittivity  and magnetic 

permeability, light interacts with a resonant medium by 
forming polaritonic waves (mixed excitations of the 
electromagnetic field with quasiparticles related to material 
resonances). The behavior of such excitations is governed 
by the dispersion determined by the material resonances. In 
particular, the presence of metamaterials in photonic 
crystals has implications for the existence of non-Bragg 

gaps in one dimensional [11] and two-dimensional 

structures [12]. In this sense, negative refraction of surface 
plasmon polariton and the existence of backward waves, 
with negative group velocity are of considerable interest     

[13-15]. 
Most of the papers on modes in systems containing 

metamaterials consider non-resonance behavior of the 

dielectric permittivity  and the magnetic permeability  

[16-20]. The discussion of frequency regions far from the 
resonances of the refraction index allows neglecting the 
frequency dependence of the optical characteristics. In a 

recent report [21] it was shown that the simultaneous 

presence of resonances in the dielectric permittivity and the 
magnetic permeability can lead to the simultaneous 
existence of omnidirectional non-Bragg gaps for both 
transversal electric (TE) and transversal magnetic (TM) 
polarizations, which are robust to uniaxial anisotropic 
effects.  

For this reason in the present communication we pay 
special attention to the region close to the resonance 
frequency of the magnetic permeability. For this purpose, 
we develop green function formalism in order to describe 
the power spectra and the dispersion relations of the surface 
modes in a metamaterial slab, which is bounded by lossless 
homogeneous dielectrics.  

The work is organized as follows. The considered 
model and the general relations of the green function 
formalism are introduced in section 2. The dispersion 
curves of the transversal electric (TE) and the transversal 
magnetic (TM) modes are discussed in section 3 for 
frequencies close to the resonance frequency of the 
magnetic permeability; the power spectra of TM  modes are 
also considered in this section. The results are summarized 
in section 4, with a brief indication to future perspectives. 
 

Model and general relation 

Description of the system 

We consider a homogeneous and isotropic planar 
metamaterial formed by a slab of thickness l, which 
occupies the region –l/2<z<l/2. It is assumed that the 
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frequency dependencies of the dielectric permittivity and 
the magnetic permeability have resonant character and are 
chosen in the form 
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where,  is the dielectric permittivity at high frequencies, 

LO  is the frequency associated with the electric plasmon 

mode, TO  ( m ) is the resonant frequency of the 

dielectric permittivity (magnetic permeability), 

respectively;  e  and m  are the damping constants in the 

active metamaterial medium and B is the filling factor. The 
regions z < -l/2, z > l/2 are occupied by lossless dielectric 

media 1, 3 with dielectric permittivities ,1 ,3 and 

magnetic permeabilities ,1  3 respectively.  

 
Green’s function formalism 

By following the methodology described in [22], and used 

in [23] for the description of  Tamm states at the interface 
between a conventional material and a one dimensional 
photonic crystal with metamaterials, the photon Green’s 
tensor   ;', xxD  is the solution of the equation 
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,  ,f , (x) is the step function. At the boundaries 
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must be continuous (i=x,y). The homogeneity in the x, y 
plane allows introducing the Fourier transformation 
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 and the isotropy in the x, y plane can be accounted by 
introducing the tensor 
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yyxx  , izizS  . After a straightforward 

calculation, the following expressions for the diagonal 
components of the photon Green’s tensor are obtained for 

the case :0´z            
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The poles of the Green tensor corresponding to 0

pf  

give the dispersion relations of the TM modes arising in the 
considered system, whereas the dispersion relations of the 

TE modes correspond to the solutions of 0

sf . If the 

relations    ii

x
c

k 


2

2
2    (i =1, 2, 3) take place, the modes 

exist in the nonradiative region of spectra. From the 
expressions for the diagonal Fourier components of the 
photon propagator of the considered system it is possible to 
obtain the peaks corresponding to the power spectra 


i

iigIm  of such modes. For the case l,   1i  

expressions (2-5) reduce to those reported in the appendix 

of [24].  
 

Results and discussion 

In the following we introduce the dimensionless quantities 

/TO, ckx/TO and the set of values 2 ,
TOLO  5.1 , 

1.0
c

lTO
, B=0.5, 131   , 131   , e=10

-3

TO , 

m=10
-4

TO , is used. The modes arising in the frequency 

range  mLO  ,max0   for different values of the 

resonance frequency m will be considered. 

Fig. 1(a) shows the surface polariton dispersion curves 
for a slab of metamaterial with resonance frequency 

.5.0 TOm    The dashed areas correspond to the 

existence of the metamaterial bulk modes. For these 
parameters the surface modes exist in the frequency 

intervals * m
 (for the TE modes) 

and
LOTO  

 

(for the TM modes),

 

where (*
/c, *

) 

corresponds to the transparency point in the plane (kx, ) 
where the dispersion curves of bulk modes intersect (i.e.,     
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 (2)
(*

) (2)
(*

)=1). The low frequency TE mode arises 
from the antibonding combination of the electric fields at 
the slab surfaces, it starts at the point where the resonance 

frequency m intersects the line =ckx, then it increases 
with the in-plane wave vector kx and in the nonretarded 

region of the spectra (kx>>/c), it tends to the frequency 

sm, corresponding to the root of the relation (2)
(sm)=-1. 

On the other hand, the high frequency TE mode arises from 
the bonding combination of the electric fields at the slab 

surfaces, it starts at the transparency point (*
/c, *

), then it 
decreases with kx and in the nonretarded region of the 

spectra (<<ckx), it tends to sm for the whole interval of kx 
where this mode exists, it is a backward wave.  
 

(a)

(b)

 
 
Fig. 1. Dispersion curves of surface polaritons (a) and power spectra of 
TM waves (b)  arising in a slab of metamaterial for the parameter set   

2 , 5.1
TO

LO



 , 1.0
c

lTO
, B=0.5, 11  , 11  , 

5.0
TO

m




. The regions of existence of bulk modes of medium 2 are 

shown with shade. Green (blue) lines correspond to TE (TM) modes. 

 
The frequency range of TM is separated from the 

corresponding interval for TE modes by the 

interval
TO * . As in the case of TE modes, the low 

(high) frequency TM mode arises from the antibonding 
(bonding) combination of the magnetic fields at the slab 
surfaces; the corresponding dispersion curves start at the 

point where the resonance frequency TO intersects the line 

=ckx and in the nonretarded region of the spectra both 

dispersion curves tend to the frequency se, corresponding 

to the root of the relation (2)
(se) = -1. The antibonding TM 

mode is a forward wave in the whole interval of kx where 
this mode exists, whereas the bonding TM is a forward 
wave only in the interval of kx where retarded effects are 
relevant. In the nonretarded region of the spectra the 
bonding TM mode is a backward wave. 

In Fig. 1(b) we show the power spectra of the TM 
modes for different values of the in-plane wave vector kx. 

Note that for kx >LO/c there are two peaks corresponding 
to two localized TM modes with frequencies above the 

resonance frequency TO but for kx <LO/c there is only one 
peak corresponding to the antibonding TM wave. Note also 
that the position of the peaks corresponding to the mode 

closest to TO is an increasing function of the in-plane wave 
vector, whereas for the bonding TM mode the frequency at 
the maxima of such peaks slowly decreases with kx. 
 

(a)

(b)

 
 
Fig. 2. Same as in Fig. 1, but for 

TOm  3.1 . 

 

Fig. 2 shows the dispersion curves and the power 
spectra of surface polaritons arising in a slab of 
metamaterial for the case when the resonance frequency 

belongs to the interval .LOmTO   In this case the 

frequency ranges for existence of TE and TM modes are not 
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separated by a frequency interval, in contrast to the 

case TOm   . Retarded effects are relevant for the 

bounding TM modes and can be neglected for kx>> LO /c; 
under such condition this mode is a backward wave. Note 
also that the antibounding TE mode and the antibonding 
TM modes start at the same point, being the latest mode a 
backward wave with a frequency asymptotically 

approaching sm. This result is in agreement with that 
reported for surface polaritons of a semi-infinite 

metamaterial medium [25-27]. 
 

(a)

(b)

 
 

Fig. 3. Same as in Fig. 1, but for TOm  2 . 

 

In Fig. 3 the case 
LOm    is considered. Note that the 

set of TE dispersion curves is above the corresponding set 
of TM curves and the frequency range for the existence of 
TM is separated from the corresponding interval for TE 

modes by the interval
mLO   . Retarded effects are 

relevant for the bounding TE modes and can be neglected 

for kx>> sm /c.  On the other hand, these effects can be 

neglected for both TM modes for kx>> LO /c. From the 
positions of the peaks of the power spectra of TM waves 
arising.in the considered slab of metamaterial we can see 

that mode closest to TO is an increasing function of the in-
plane wave vector, whereas for the bonding TM mode the 
frequency at the maxima of such peaks slowly decreases 

with kx. This behavior is qualitatively similar to the 

behavior of TM modes when the resonance frequency  m is 

below  TO. 
 

Conclusion  

The electromagnetic propagator was calculated in order to 
describe the properties of TE- and TM surface modes 
arising on the interface between conventional and 
metamaterial media with a dielectric permittivity and a 
magnetic permeability showing resonant character and 
paying special attention to the character of the modes for 

different relations between the resonant frequency m of the 

magnetic permeability and the resonant frequency TO of 
the dielectric permittivity. Two sets of surface polaritonic 
frequencies are found for TE- and TM surface modes, 
corresponding to bonding and antibonding oscillations of 
the corresponding electric and magnetic fields at the slab 
surfaces. It was shown that for all the range of values in the 

relation m/TO there is one TE and one TM backward 
mode with negative group velocities. On the other hand, if 

the resonance frequency m is lower than TO or higher than 
the frequency associated with the electric plasmon mode 

LO, the frequency range of TM is separated from the 
corresponding interval for TE modes and for resonance 

frequencies TO <m <LO such frequency intervals are not 
separated.  

This work can be extended to consider propagation of 
electromagnetic waves in photonic crystals containing slabs 
with resonant behavior in the dielectric permittivity and the 
magnetic permeability. Additionally, anisotropic systems 
with strong dependence of frequency of the dielectric 
permittivity and the magnetic permeability tensors can be 
considered. These perspectives could be useful for the 
future design of omnidirectional, robust to polarization, 
optical filters because the incorporation of thin films made 
of an active medium, positioned adjacent to the core layer 
of a waveguide with negative refractive index, can 
completely eliminate the dissipative losses under a slow or 
detained regime, where the effective index of the guided 
light wave remains negative.  
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