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ABSTRACT 

Thermoelastic martensitic transformations play a fundamental role in the shape memory effect and related phenomena. Owing 
to their unique crystallographic and thermomechanical behaviour, martensitic transformations have generated considerable 
research in the areas of crystallography, thermodynamics and mechanical behaviour. In the area of thermodynamics a theoretical 
approach is now added which provides the basis for thermoelastic behaviour through consideration of the Gibbs energy change. 
In this paper, the interrelation of internal elastic stresses and martensite shear stresses in phase transitions has been defined. A 
thermoelastic stress equilibrium equation for a wide range of martensitic transformation temperatures has been presented. On 
the basis of the calculations made, an estimation of dislocation defects formation energy for the TiNi-based alloy has been 
made. For TiNi-based composition made of TN-10 brand alloy, commercially produced for medical goals, the energy of 
vacancy formation is about 0.06 kcal/mol. The study and calculations are shown to make clear, using a new approach, the 
considering of phase transitions in terms of external and internal stresses. Copyright © 2015 VBRI Press.  
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Introduction  

The term "martensite transition" (martensite 
transformation) was originally introduced to characterize 
the processes of hardening during steels quenching. 
Currently, the term has a broader meaning. Martensite 
transformations include all diffusionless cooperative phase 
transitions in solids. Modern ideas about the regular nature 
of lattice restructuring at martensite transformations – the 
majority of atoms before and after the transition have the 
same "neighbors" – suggests the shear nature of changes in 

the lattice shape of the transformed area in a solid [1]. A 
shear (a change in shape) is a result of the interface 
movement and can be caused by change in temperature (T), 
pressure (p), strain (ε) and entropy (s). When cooling or 
loading the interface moves in one direction (martensite 
transformation), when heating or unloading it moves the 
reverse direction (austenite transformation), leading to a 
reverse shear and shape recovering. Experimentally, the 
surface relief appears and disappears on a solid’s polished 

surface [2]. 
At martensite transformation, the new phase areas 

appear as crystals, which growth may stop when the 
interface is no longer coherent or the removing of the 
accumulated stresses by plastic flow happens. 
Simultaneously, the transition involves many interrelated 
areas (crystals) of the product phase, which interaction is in 
constant evolution and could be determined by internal 

http://dx.doi.org/10.5185/amlett.2015.5597


 

Research Article                              Adv. Mater. Lett. 2015, 6(1), 8-12                ADVANCED MATERIALS Letters 

Adv. Mater. Lett. 2015, 6(1), 8-12                                                                                      Copyright © 2015 VBRI Press                                               
  

stresses and the shear of the produced area, by the nature of 

heat release absorption during phase transitions [3].  
TiNi-based alloys are increasingly being used in 

medical applications because of their ability to survive 
large loads at a constant stress without permanent plastic 
strain [3]. Recently, medical design engineers are also 
interested in various shapes and forms of the material for 
use in components for new medical goals, e.g. surgical 

technologies [4]. For these engineers, it’s critically 
important to understand and characterize the properties of 
the material as well as to predict the criteria of stress-strain 
dependence and dynamic behavior. However, the previous 

research work [5] conducted on the investigating the stress-
induced martensitic transformation as energy-dissipative 
processes, i.e. hysteretic between the forward and reverse 
processes in TiNi-based alloys and to draw general rules 
governing the hysteretic behavior of these alloys, was 
preliminary and needed further study. Moreover, only 
limited research works on the fundamental mechanism of 
deformation behavior of TiNi-based alloys in terms of 
external and internal stresses have been reported in the 

open literatures [6]. The objective of the present work is to 
continue a moving from theoretical consideration to 
practical aspect and to explore, using the Gibbs energy 
change, the martensite transformation in TiNi-based alloys 
in terms of external and internal stresses. 

 

 
 
 
Fig. 1. Temperature dependence of martensite shear stress and yield 
strength of alloys showing martensite transformation. 

 

Theoretical analysis 

Main features of solids’ macroscopic behavior, where the 
martensite phase transition takes place, are described by the 
thermodynamic equilibrium equation, which establishes the 
relationship between the functions of the state in a solid: 
temperature (T), pressure (p), volume (V) and entropy (s). 

Generally, during phase transitions, the thermoelastic 

equilibrium equation may be represented as [7]: 
 

G
AM

=G
MT

 + G
elast

 = 0                                    (1) 

Where, G
AM

 is Gibbs energy change (Gibbs 
functional) at the transition from the parent phase (the A 

phase), to the produced one (the M phase); G
MT

 is Gibbs 
energy change associated with the martensite 

transformation (MT); G
elast

 is Gibbs energy change 
associated with a change of elastic energy at the transition 
from the A to the M phase (when the first dislocations 
appear). 

In the general case, equation (1) is satisfied throughout 
the range of temperatures both in the A and the M phases, 
including the double-phase state temperature area. 

Analyzing the temperature dependence of martensite 

shear stress (within dMM 1  range) on Fig. 1 and the 

temperature dependence of yield strength (within 

1ТМ d   range), one can estimate the level of G
MT

 and 

G
elast

. 
The greatest interest for the thermoelastic equilibrium 

equation analysis is the Md point, which is the maximum 
temperature when the martensite phase transition under the 
stress σcr occurs. But the temperature Md is, at the same 
time, the minimum temperature when applying the critical 
stress σcr first dislocations appear, i.e. the plastic strain 
takes place. 

Let’s consider Gibbs energy change G
MT

            (G
MT 

=
M

F

A

F GG  ) for the temperature range ds MM   under 

conditions of independent variables of temperature and 
pressure (T and σ). 

For the parent phase (the A phase), Gibbs energy 
change G

A
 under conditions of the phase transition in a 

differential form [8, 9] can be represented as the following 
equation: 
  

dpVdTSdG A

F

A

F

A

F  .   (2) 

 
For the martensite phase (the M phase), at the phase 

transition, differential record of Gibbs function change will 
look like: 

 

dpVdTSdG M

F

M

F

M

F  .  (3) 

 
  

Under the conditions of phases equilibrium 
 

A

FdG M

FdG  , 

Then, 

 dpVdTS A

F

A

F dpVdTS M

F

M

F   

or 

A

FV( dp)V M

F  A

FS( dT)S M

F , 

i.e. 

dT
V

S
dp

MA

F

MA

F
F 






 .   (4) 

  
At constant pressure in both phases 

   
T

H
S

M

F
  , 
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Where, 
M

FH  is the enthalpy of a transition from the A 

to the M phase; TT0 corresponds to the equilibrium 
temperature. 

Formula (1) becomes: 
  

dT
VT

H
dp

MA

F

MA

F
F 










0

 . 

  

For solids the pressure change p corresponds to the 

stress change , and the change in volume V 

corresponds to the change of deformation , therefore 
 

dT
T

H
d

MA

F

MA

F
F 










0

. (5) 

  
Temperature T0 implicitly corresponds to the 

temperature Ms of phase equilibrium under conditions when 
no load applied. 

Equation (5) describes the set of points of the line 

dMM 1  on the temperature dependence of martensitic 

shear stress (Fig. 1). Specifically for point Md, equation (5) 
in the integral form will look like: 

  

T
M

H
MA

maxS

MA

FMd

Fcr 









 , 

  

Where: 
Md

Fcr

Md

Fcr

Md

Fcr  0 , T = Md–Ms. 

 
Thus, 

)MM(
M

H
SdMA

maxS

MA

FMd

Fcr 









.  (6) 

  

Critical stress 
Md

Fcr of formula (6) corresponds at 

dM temperature to maximum stress induced of martensite 

phase under load. 

In the temperature range 1TMd   under the load no 

phase transition occurs. Deformation in this temperature 
range is carried out by plastic shear, i.e. critical stress on 

line 1TMd   (Fig. 1) corresponds to the internal stress 

and critical stresses of dislocations occurrence. 
Temperature Md characterizes the maximum level of 

stresses 
M

cr of dislocations occurrence at a temperature 

near Md. 
Using Gibbs functional we can calculate the stress at 

which dislocations appear, and calculate the energy of 

dislocations formation for the plot 1TMd   as well. 

When a load is applied, Gibbs energy change in the 
transition from the A to the M phase, caused by overcoming 
internal stresses and formation of dislocations at the area 

dMT 1 (Fig. 1) can be represented as: 

  

M

g

A

g

elast GGG  ,        (7) 

  

Where, A

gG is Gibbs energy corresponding to the A 

phase before stress induced dislocations appearing; 

M

gG is Gibbs energy corresponding to the M phase at the 

moment stress induced dislocations appearing. 
In differential form, changes of the energy states of 

A

gG and 
M

gG can be represented as: 

 

dpVdTSdG A

g

A

g

À

g   , 

dpVdTSdG M

g

M

g

M

g   . 

  
Assuming that at the boundary conditions 

À

gdG M

gdG , then 

  

 dpVdTS A

g

A

g dpVdTS M

g

M

g   , 

or 
  

 dpVV M

g

A

g )( dTSS M

g

A

g )(   , 

i.e. 

dT
V

S
dp

MA

g

MA

g








 .    (8) 

When the pressure is the same both in the A and the M 
phase 

  

0T

H
S

MA

gMA

g






  , 

Where,  MA

gH is enthalpy of transition from the A 

to the M phase; 0T corresponds to the equilibrium 

temperature. 
Formula (8) will look in the following way: 

  

dT
VT

H
dp

MA

MA

g











0

.   (9) 

  

As for solids, p , and V – corresponds to 

max , equation (9) can be represented as 

  

dT
T

H
d

MA

g

MA

g










0

,    (10) 

  
Equation (10) describes the set of points of the line 

dMT 1 on the temperature dependence of dislocations 

occurrence stresses (Fig. 1). 
Specifically for point Md, equation (10) in the integral 

form will look like: 
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T
T

H
MA

g

MA

gMd

gcr











1

 , 

  

Where: 
Md

g

Md

cr

Md

g crcr
 0 ; 1TMT d  . 

 
Thus 

)TM(
T

H
dMA

g

MA

gMd

gcr 1

1











. (11) 

 

Critical stress 
Md

gcr
 of formula (11) corresponds at Md 

temperature to maximum level of stresses of dislocation 
defects occurrence without participation of the M phase 
under load. 

Based on equations (6) and (11) and analyzing the Fig. 

1, the following entry can be presented: 
  

Md

g

Md

Fcr

Md

cr cr
  , 

i.e., 
  











)MM(
M

H
SdMA

maxFS

MA

FMd

cr

01

1











)MT(
T

H
dMA

maxg

MA

g
,    (12) 

  
or   











)MM(
M

H
SdMA

maxFS

MA

FMd

cr  

 01

1









)MT(
T

H
dMA

.maxg

MA

g
,   (13) 

  
Where,  

Md

g

Md

F crcr
 . 

 
Equation (13) is the equation of thermoelastic stresses 

equilibrium in point Md in Fig. 1 when the stresses caused 
by martensite phase transition are balanced by elastic 
stresses at this point. 

But this equation also evidences the fact that the 
martensite transition can take place without load applied in 
the event when contribution of elastic stresses in equation 

(13) corresponds to the value 
Ms

cr (see Fig. 1), i.e. when 

Ms

cr Md

gcr
 2 . 

Equation (13) allows to perform a very important 

calculation that will estimate 
MA

gH  – the latent energy 

of dislocations occurrence, as the rest values in equation 
(13) can be determined from experimental data. 

Thus,  
 









)MM(
M

H
SdMA

maxFS

MA

F )TM(
T

H
dMA

maxg

MA

g

1

1









  (14) 

 

Calculation 

For TiNi-based composition made of TH-10 brand alloy 

commercially produced [3, 10, 11] 

 MA

FH  2.2 kcal/mol; 

Ms  300 K; 

 MA

maxF  10% = 0.1; 

Md  600 K; 

T1  900K; 

MA

g max  0.1% = 0.001; 

  

 MA

gH
)TM(

T)MM(

M

H

d

MA

maxgSd

MA

maxFS

MA

F

1

1














 ; 

 MA

gH MA

FH 
K.K

.KK

30010300

0010900300




;-(15) 

  

 MA

gH 030.H MA

F  
 ; 

i.e.  

 MA

gH 0.03
MA

FH  ;  

as MA

FH 2.2 kcal/mol,  

Then 
MA

gH    0.032.2 kcal/mol, 

 MA

gH  0.066 kcal/mol.   (16) 

 
Therefore, considering that in equation (15) the minus 

sign evidences that vacancies formation goes with heat 
absorption, the energy of vacancy formation is about 0.06 
kcal/mol. 
 

Summary 

 
Gibbs potentials thermodynamic equilibrium equation (1) 
and thermoelastic stresses equilibrium equation derived in 
this paper establishes a relationship of internal elastic 
stresses and external phase stresses responsible for 
martensite transformations in solids. 

Temperature Md is a critical temperature in relation to 
internal elastic stresses and external stresses, which are 
balanced and in accordance with the equilibrium 
thermoelastic equation create local stresses, which 
correspond to the sum of the absolute 

stresses
Md

g

Md

F crcr
 . 

Temperature Ms is a critical temperature at which elastic 
stress reaches also values that correspond to the absolute 

value 
Md

g

Md

F crcr
 , and the martensite transition occurs 

spontaneously without external load applied. 
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Throughout the temperature range dS MM  the 

condition of thermoelastic equilibrium of stresses is 
fulfilled, i.e. maintaining the constancy of stresses in the 
critical points, for example at temperatures C and B 

corresponding to 
C

FM and 
C

gM , 
B

FM and 
B

gM  points: 

  

 11  22   . 

  
This also results in the following relaion 

Ms

cr

Md

cr2 . 

The above study and calculations are shown to make 
clear, using a new approach, the considering of phase 
transitions in terms of external and internal stresses. Of 
particular importance to thermoelastic behaviour is the 
change in Gibbs’ energy accompanying the transformation 
and the frictional work required to propagate the 
martensite-parent phase interface during the transformation. 

A general methodology of complex considering and 
understanding of the martensite transformation is necessary 
to obtain the reliable knowledge on TiNi-based alloys 
studying. The procedure must define the paradigm and 
approaches to explore, analyze, and combine data acquired 
for the further design, processing and control best adapted 
to the SMA developed application. If the basis of the 
procedure is correctly set, new devices for their use in 
medicine or industries can successfully be designed and 
manufactured.  
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