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ABSTRACT 

In this paper, semi-empirical formula for the bulk modulus (B in GPa) and shear modulus (G in GPa) of perovskite structured 

solids are elaborated in terms of lattice constant (a in Å) and product of ionic charges (Za Zx) of the bonding. Values of bulk 

modulus, of the group ARh3X, (X = B and C) perovskite-type materials exhibit a linear relationship when plotted against the 

lattice constant (a) normalization, but fall on different straight lines according to the product of ionic charges of the compounds. 

The resulting expressions can be applied to a broad selection of perovskite (ARh3X = A: large cation with different valence and 

X: borides and carbides) materials and their modulus predictions are in good agreement with the experimental data and those 

from ab initio calculations. Copyright © 2014 VBRI press.  
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Introduction  

Perovskite-type oxides are of great interest in materials 

science because the relatively simple crystal structure 

displays many diverse electric, magnetic, piezoelectric, 

optical, catalytic and magnetoresistive properties. This is 

one of the most frequently encountered structures in solid-

state physics, and it accommodates most of the metallic 

ions in the periodic table with a significant number of 

different anions [1-5].  

On the other hand, studies on non-oxide perovskite-type 

compounds such as the ternary rare earth rhodium borides 

ARh3B and carbides ARh3C (A = rare earth) have been 

comparatively rare. It is of interest to systematically 

investigate the properties of non-oxide perovskite-type 

compounds because boron makes many technologically 

important compounds with mechanical hardness. It is also 

an interesting problem to analyze the effects of carbon 

doping in place of boron in these systems. The structural, 

elastic, dielectric and optical properties of the cubic 

perovskites are very important [6].  

Recent developments in modeling, through the use of 

density functional theory (DFT) and the increased 

availability of computational power, have made predictions 

of solid state properties ab initio from theoretical principles 

relatively straightforward [1, 5]. Hence it is now common 

to see calculations for the solid state properties of binary 

and ternary compounds. Experimental data to verify these 

predictions are sparse, especially for non equilibrium 

systems, and it can be difficult to interpret the accuracy of 

published data [7, 8].  

A number of theoretical calculations based on empirical 

relations have become an essential part of material research. 

In many cases empirical relations do not give highly 

accurate results for each specific material, but they still can 

be very useful. In particular, the simplicity of empirical 

relations allows a broader class of researchers to calculate 

useful properties, and often trends become more evident. 

As a result, analytical and semiempirical methods need to 

be elaborated in concert with computational approaches 

and estimations. Empirical concepts such as valence, 

empirical radii, ionicity and plasmon energy are then useful 

[3, 4, & 9]. These concepts are directly associated with the 

character of the chemical bond and thus provide means for 

explaining and classifying many basic properties of 

molecules and solids. 

As for covalent materials, it was found by Cohen [10] 

that their bulk modulus B (GPa) can be estimated by the 

following semiempirical expression: 
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where NC is the bulk coordination number, d is the bond 

length, and  is an empirical ionicity parameter that tkes 

the values of 0, 1, and 2 for IV, III-V and II-VI group 

semiconductors, respectively. Recently, Verma and co-

authors [3, 4, & 7] has been evaluated the structural, 

electronic, mechanical and ground state properties of 

binary and ternary crystals with the help of ionic charge 

theory. This is due to the fact that the ionic charge depends 

on the number of valence electrons, which changes when a 

metal forms a compound. In this paper, we improved this 

formula by replacing the ad hoc empirical ionicity 

parameter with more suitable product of ionic charge of the 

compounds. Both experimental data and theoretical 

calculations based on density functional theory follow the 

correlation.  

 

Theory  

There have been a number of reports in the past of 

empirical relations describing the mechanical properties of 

solids. Anderson and Nafe [11] first proposed an empirical 

relationship between bulk modulus B at atmospheric 

pressure and specific volume V0 of the form B ~ V0
-x

. They 

find it to hold for a particular class of compounds. Where 

the value of x depend on the class of compounds. For alkali 

halide, fluorides, sulfides and telluride they find x to be 1 

and oxide compounds x is close to 4.  

One of the earliest attempts at describing bulk modulus 

B in terms of electronic parameters [12] yielded a simple 

proportionality relation between B and the product of the 

electron concentration with Fermi energy. However, the 

resulting formula is of limited utility, since it usually gives 

values within a factor of 2 of the experimental values. 

Recently, Gilman [13] derived expressions for both bulk B 

and shear G moduli of metals based on simplified 

quantum-mechanical considerations. The derived 

expressions also suffer from notable deficiencies, as they 

ignore the effects induced by ionicity of the bonds and 

exchange-correlation interactions amongst others.  

Both bulk B and shear G moduli can be derived from 

the second derivative of the total energy E with respect to 

the appropriate deformation parameter at the equilibrium 

state as follows [10]: 
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where  and  stand for volume and dimensionless 

deformation parameter, respectively. From Eqs. (2) and (3), 

it is evident that the first step in establishing the formulae 

for bulk and shear moduli is to approximate the energy 

derivatives in terms of chemical bonding parameters. Due 

to their spherical symmetry and tight-binding character, the 

core electrons are nearly unresponsive to low-energy 

perturbations [14] like those occurring under elastic 

deformation; while the valence electrons are completely 

affected by such phenomena. Consequently, the core 

electrons do not have a significant contribution to the 

elastic response of a material deforming within the limits of 

the elastic regime; whereas, the valence electrons are fully 

involved in the distortion process. Since the involvement of 

core electrons in the elastic deformation is insignificant, the 

variation of their energy is also negligible. Therefore, 

within the limits of the elastic regime, the second derivative 

of the total energy can be approximated by the variation of 

the valence electrons’ force. In the case of covalently 

bonded materials, as discussed by Philips [15] the band gap 

energy Eg provides an estimation of the valence bond 

strength and it results from homopolar and heteropolar or 

ionic contributions of the atoms to the bonds as follows: 
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Here Eh refers to the homopolar or covalent 

contribution to the bonding, while Ec corresponds to the 

ionic contribution or the charge transfer to the bonds. In the 

case of purely covalent group IV crystals, such as diamond, 

silicon, or germanium, Eg is equal to Eh. Consequently, Eh 

characterizes the strength of the covalent bond. Cohen was 

the first to maintain [10] that Philips’ homopolar band gap 

energy is the dominant energy parameter in covalent solids. 

Recently, relationships connecting inherent traits such as 

thermal activation energies [16] and hardness [17] to the 

homopolar band gap energy were elaborated in the case of 

covalent crystals. These works further confirm that the 

intrinsic properties of covalent materials are predominantly 

dictated by Eh. Using a scaling argument, Eh can be 

expressed in terms of d as follows: [15] 
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where the units of Eh are in eV and d (nearest neighbour 

distance) is in Å. Since for small amounts of deformation, 

the strain parameter is a linear function of the nearest 

neighbour distance, from Eq. (5), it follows that 
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The cylindrical-shaped charge volume of covalent 

crystals is a linear function of the nearest neighbour 

distance, 
  daB

2
2  (aB is Bohr radius) and it can be 

used in Eqs. (2) and (3), since it encloses the largest 

electron concentration [10]. Thus Eqs. (2)–(6) yield 
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The author in previous research [3, 4, 7] found that 

substantially reduced ionic charges must be used to get 

better agreement with experimental values. Goldshmidt 

[18] has pointed out that a term A = ZaZc, where Za and Zc 

are the valence number of anion and cation, respectively, 

may be considered for a direct comparison of the hardness. 

Further it is well known that the hardness is closely related 

to the elastic properties of crystals [19] Ionic charge 

depends on the outermost-shell electrons of an atom. Thus, 

there must be a correlation between ionic charge and the 

properties of solids. 

Linear regression lines have been plotted for the bulk 

modulus (in GPa) and shear modulus (in GPa) which result 

in equation of the form 
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and 
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where Za, and Zx  are the ionic charges on the A and X, 

respectively and a is lattice parameter in Å. The constants S 

and V are given in table 1 along with the correlation 

coefficient (R) obtained from the regression analysis.  

 
Table 1. Linear regression results from the data for ARh3B and ARh3C 

perovskites. 

 

 

 
 

Fig. 1. Plot of bulk modulus B (GPa) and lattice constant (a in Å) for the 

group ARh3B and ARh3C perovskites and found at two positions, which is 

depending upon the product of ionic charges. In this figure bulk modulus 
and lattice constant values are taken from Reference [6]. 

 

Results and discussion 

The knowledge of elastic moduli is necessary in order to 

come to a better theoretical understanding of material 

properties that are essentially determined by the phonon             

density of states and lattice anharmonicity effects or by 

electron-phonon interaction processes mediated via 

deformation potentials. In view of the still unsatisfactory 

and contradictory data on the mechanical properties of the 

compounds on the one hand and of the importance of their 

knowledge for a comprehensive analysis of a wide variety 

of material characteristics on the other hand it was the aim 

of the present study to critically evaluate and review related 

experimental and theoretical data reported in the literature 

so far.  

 

 
 

Fig. 2. Plot of shear modulus G (GPa) and lattice constant (a in Å) for the 

group ARh3B and ARh3C perovskites and found at two positions, which is 

depending upon the product of ionic charges. In this figure shear modulus 
and lattice constant values are taken from Reference [6]. 
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Fig. 3. Bulk modulus B (GPa) for perovskites (ARh3B and ARh3C) as a 

function of (ZaZx)
0.25/a3.5. This line show linear relationship as determined 

by regression analysis. In this figure bulk modulus and lattice constant 
values are taken from Reference [6]. 

 

It has been verified [10] that elastic moduli assume a 

decreasing linear trend with increasing lattice parameter. 

Therefore, based on Eqs. (7) and (8), the fact that B and G 

are linear functions of lattice constant. These elastic moduli 

are expected to exhibit the explicit dependences on lattice 

parameter (a in Å) and ionic charge (Z). As an example to 

verification of ionic charge theory, we have plotted the 

Properties S V R

Bulk modulus B -2.82516.48 15754.751330 0.97227

Shear modulus G 196.59.72 430542267 0.98903
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curves between B Vs a
3.5

 (B = bulk modulus in GPa, a = 

lattice parameter in Å) and G Vs a
5.5

 (G = shear modulus in 

GPa, a = lattice parameter in Å) for the group ARh3B and 

ARh3C perovskite-type compounds and data are presented 

in the following Fig. 1 and 2. We observe that in the plot of 

B Vs a
3.5

 and G Vs d
5.5

, the group ARh3B and ARh3C 

perovskite-type compounds exhibit two positions in these 

figures. This effect induced by the ionic charges of the 

compounds in the case of group ARh3B and ARh3C 

perovskite-type compounds. If all data of bulk modulus (in 

GPa) and shear modulus (in GPa) plots with product of 

ionic charges (ZaZx)/a normalization of group ARh3B and 

ARh3C perovskite-type compounds and found a straight 

line for all groups, which are presented in Fig. 3 and 4.  
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Fig. 4. Shear modulus G (GPa) for perovskites (ARh3B and ARh3C) as a 

function of (ZaZx)/a
3.5. This line show linear relationship as determined by 

regression analysis. In this figure shear modulus and lattice constant 

values are taken from Reference [6]. 

 
Table 2. Values of bulk modulus (B in GPa) and shear modulus (G in 
GPa) defined by Eq. (9) & (10) obtained for ARh3B and ARh3C 

perovskites. 

 

 
 

From the comparison Fig. 1-4, we see that three lines 

found in Fig. 1 & 2 due to different ionic charges of the 

compounds. In Fig. 3 & 4, it has been verified that bulk 

modulus and shear modulus assume a linear trend with 

lattice parameter. We note the procedure for determining B 

(in GPa) and G (in GPa) from these techniques considers a 

difference between experimental measurements, and this 

could magnify errors.  

         In the Table 2, we have presented bulk modulus 

values evaluated by Sahara et al. [6] for the sake of 

comparison. The simple trend when a larger lattice constant 

leads to a smaller bulk modulus and shear modulus. It has 

been demonstrated also for different perovskites AB3X [20]. 

In the present work it is shown that analogous relation 

exists for the perovskite materials, which can be 

successfully employed to estimate the bulk modulus and 

shear modulus from their ionic charges. We note that the 

evaluated values of elastic moduli by the proposed relation 

are in close agreement with the experimental data as 

compared to the values reported by previous researchers so 

far. Consequently, the reliability and accuracy of proposed 

formula is well verified.  

 

Conclusion 

There are several methods in determining elastic properties 

in materials, but due to the small changes of the unit cell 

dimensions, the accuracy of determining these parameters 

always have been unpredictable. We developed a semi-

empirical formula for shear modulus of perovskite-type 

materials and obtained an improved universal formula for 

their bulk modulus. The investigation of the ratio of these 

formulae, whose accuracy is comparable to that of the first-

principles calculations, clearly demonstrated the 

predominance of the lattice parameter in assessing brittle 

characteristics of perovskite-type materials. The method 

presented in this work will be helpful to material scientists 

for finding new materials with desired elastic properties 

among a series of structurally similar materials. 
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Solids a (Å) 

[6]

ZaZx B (GPa) 

[6]

B (GPa) this 

work



error

G (GPa) 

[6]

G (GPa) this 

work



error

ScRh3B 4.08 9 201 196 2 364 366 0.6

YRh3B 4.168 9 183 182 1 351 347 1.0

LaRh3B 4.251 9 166 169 2 327 332 1.5

ScRh3C 4.03 12 219 220 1 438 439 0.1

YRh3C 4.126 12 200 203 1 407 409 0.5

LaRh3C 4.27 12 181 179 1 379 373 1.7


