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Abstract 

In this article, we review the recent works of quantum simulation of novel systems briefly, the parity-time-reversal-

symmetric (PT-symmetric) quantum system and the Yang-Baxter-equation (YBE) system, using duality quantum 

algorithm. Duality quantum algorithm studies the linear combinations of unitary operators, making it possible to simulate 

non-unitary evolutions of novel quantum systems. A PT-symmetric quantum system is a typical non-Hermitian system 

of which the evolution is not unitary and cannot be simulated directly by a conventional quantum computer. A recent 

work by C. Zheng has established a theory to simulate a general PT-symmetric two level system by duality quantum 

computing. The other typical example is the YBE quantum systems, of which the evolutions can be both unitary and 

non-unitary. C. Zheng and S. J. Wei described a theory that the two hand sides of the YBE can be simulated efficiently 

by the duality quantum algorithm in their recent research. Perspectives of future applications are expected at last. 

Copyright © VBRI Press. 
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Introduction 

Quantum information science is one of the hottest 

frontier areas nowadays. One of the aims is to produce 

practical quantum computers. On one hand, it is to meet 

the technological problem that quantum effects would 

appear as the increasing of the density of integrated 

electronic circuits. On the other hand, it is from the 

science itself as Feynman gave an enlightening idea that 

quantum physics can be simulated by nature itself [1], 

opening a way to investigate quantum systems 

efficiently. Therefore, quantum simulation becomes the 

one of the motivations and is still a main research area 

of the quantum information science. 

 Scientists have made a lot of efforts from different 

areas, and quantum computers are becoming practical 

technologies especially for small physical systems. For 

instance, many low dimensional quantum systems can 

be investigated by quantum simulators [2-14]. To 

simulate a quantum system, it starts from constructing 

an effective Hamiltonian. The time evolution of the 

system can then be simulated and realized. Because a 

conventional quantum computer is charged by the law 

of standard quantum mechanics, only the Hermitian 

quantum system can be simulated directly. The standard 

quantum mechanics requires a Hermitian Hamiltonian, 

and thus the evolution of the system is unitary. For non-

Hermitian systems, they cannot be simulated directly by  

a conventional quantum computer in principle in that 

the time-evolutionary operators are not unitary. Beside 

conventional systems, many novel quantum systems 

have novel properties, attracting attentions of scientists 

increasingly. For example, a parity-time-reversal 

quantum system has many novel phenomena and 

properties that are valuable for investigations and 

applications, e.g., the quantum entanglements in the 

system, quantum brachistochrone problem, and etc. 

However, the non-Hermitian systems evolve non-

unitarily, and a conventional quantum computer  

cannot achieve the evolutions directly. It is demanded 

methods that can simulate non-Hermitian quantum 

systems.  

 In this review article, we will base on two recent 

research works (see references [15] and [16]) which are 

related to the parity-time-reversal-symmetric quantum 

system and the Yang-Baxter-equation physical system, 

respectively. Evolutions of both the two systems are 

non-unitary which cannot be simulated in a 

conventional quantum computer directly. Duality 

quantum algorithm using the linear combination of the 

unitary operators is hired to construct the related non-

Hermitian subsystems in a higher dimensional Hilbert 

space, and the evolutions of the subsystem will evolve 

as the non-unitary operators.  

Duality quantum algorithm 

Duality quantum algorithm is first proposed in 2002 

[17] and is being developed after that time [18-24]. It 

investigates and utilizes the linear combinations of 

unitary operators, enabling non-unitary evolutions of 

novel quantum systems to be simulated in conventional 
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quantum computers. Duality quantum algorithm has 

been applied in many tasks [25-29], e.g. efficient 

quantum simulation of open system [25, 26], arbitrary 

two-qubit processing in solid quantum system [27, 28], 

test of quantum foundmental theory [29], and etc. 

    To realize the linear combination of operators, e.g., 

two terms, an ancillary qubit and another subsystem to 

be investigated are needed. The schematic scheme of a 

duality quantum algorithm with a combination of two 

terms is shown in Fig. 1. It would achieve the sumation 

of the two unitary operators of U3 and U4 acting on the 

work subsystem with the ancillary qubit being on some 

quantum state. The quantum state of the whole system 

would be prepare in a pure state in general, and the 

initial quantum state of the ancillary qubit would be 

prepared in a logical state |0⟩𝑎 . Passed through the 

circuit in Fig. 1, the initial quantum state would be in 

an output state 

𝑐1|0⟩𝑎(𝑈3 + 𝑈4)|𝜓⟩𝑠 + 𝑐2|1⟩𝑎𝑈|𝜓⟩𝑠             (1) 

where, the parameters c1 and c2 are non-zero numbers, 

and U is a unitary operator that is not focused here. 

Finally, we measure the whole system. If the ancillary 

qubit is on state |0⟩𝑎, i.e.,   

1

𝑘
|0⟩

𝑎
(𝑈3 + 𝑈4)|𝜓⟩𝑠                           (2) 

where, k is equal to the module of the sumation of the 

two unitary operators. Then the sumation of the two 

unitary operators would be achieved.  

 Following are brief review of two examples based 

on our recent works [15, 16] that can illustrate how to 

use duality quantum algorithm to simulate novel 

quantum systems. The first one is an example to 

simulate a general PT-symmetric two-level quantum 

system. The other investigates the quantum simulation 

of the Yang-Baxter equation efficiently. 

 
Fig. 1. Quantum circuit for schematic illustration of the duality 

quantum algorithm realizing two-term combinations. In the quantum 

circuit, it contains an ancillary qubit and a work subsystem that would 
evolve as the novel system to be simulated. The initial quantum state 

of the whole system would be prepared in a pure state. After it passes 

through the quantum circuit, the sum of the two terms, i.e., the two 

unitary operators U3 and U4, would be achieved and act on the work 

subsystem conditionally based on the ancillary qubit.  

Example I: PT-symmetric quantum system  

For the conventional quantum mechanics, the 

requirement that a Hamiltonian should be Hermitian, 

H+ = H, is to keep the physical system observable, i.e., 

the eigenvalues of the Hamiltonian should be real 

numbers. However, the Hermitian requirement is not 

the necessary condition that eigenvalues are real. 

Another class of Hamiltonians, which satisfy the 

relation PH+P = H, are also meet the observable need 

that the eigenvalues are real. The relations that these 

Hamiltonians satisfied are called parity-time-reversal-

symmetric symmetry, which are investigated by Prof. C. 

M. Bender in 1998 [30]. After that time, the theory and 

applications of PT-symmetric quantum mechanics are 

studied and developed heavily [31-44], attracting plenty 

of scientists’ attentions.  

 The evolution of a quantum system is decided by 

the Hamiltoian. For a Hermitian quantum system, the 

evolution operation is unitary because of the 

requirement of the Hermitian symmetry, which leads to 

the conjugate is the same as the Hamiltonian itself. The 

conventional quantum computers in the physical world 

are Hermitian systems, so they can simulate Hermitian 

system directly. For a PT-symmetric quantum system, 

however, the evolution is not unitary. Therefore, a PT-

symmetric quantum system cannot be simulated in a 

conventional quantum computer directly. 

 In the recent work [15], we gave a proposal to 

simulate a general PT-symmetric two-level quantum 

system using duality quantum algorithm. Therefore, the 

ability of a quantum computer is further extended to 

simulate novel quantum systems and investigate the 

interesting properties such as quantum entanglements, 

quantum brachistochrone problems, and etc. We also 

studied the experimental realizations with a quantum 

optics system and an NMR quantum system, discussing 

their practicality.  

Example II: Yang-Baxter-equation system 

The Yang-Baxter equation was first introduced to solve 

the repulsive δ interaction problem in one-dimensional 

N particles [45, 46], and problems of statistical models 

on lattices [47]. A plenty of physical meaning of the 

YBE is revealed, and many links to a variety of areas of 

physics, such as statistical mechanics, group theories, 

and quantum field theory [48-50]. Therefore, the YBE 

has become a significant theoretical tool in physics 

today. In recent year, it is found gradually that there are 

natural links between the YBE and one of the hottest 

frontier research, quantum information and computing 

[51-64], that the braiding operators in the YBE are 

universal quantum gates and quantum entanglement has 

close relationship with the YBE. Having attracted lots 

of attention, the YBE is being investigated in quantum 

entanglement, quantum correlation, and topological 

quantum computing intensively. 

  In the recent work [16], it is proposed first time to 

simulate the Yang-Baxter equation using duality 

quantum algorithm. We construct a subsystem of the 

PT-symmetric system as a subspace of a Hilbert space 

with higher dimensions. Thus, it can be realized both in 

a conventional quantum computer and in a duality 

quantum compute. This proposal of duality quantum 

simulation keeps the YBE as a whole, i.e., simulating 

the two hand sides of the YBE simultaneously. It is 

needed to substitute the two unitary operators U3 and 

U4 by the operators of the two hand sides of the YBE. 

Therefore, the entanglements between the two hand 

sides of the YBE can be investigated. The whole system 

consists of the YBE subsystem and an ancillary qubit, 
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and the operators can be substituted by the related 

forms. The simplest case if for a reduced two-

dimensional Yang-Baxter equation, and a general case 

of the YBE were also studied. 

 

Conclusion and future perspectives 

Duality quantum algorithm can be used to simulate 

novel quantum systems, especially for non-Hermitian 

quantum systems, of which the evolutions are not 

unitary. Any novel phenomena and non-unitary 

evolutions in PT-symmetric two-level systems can be 

investigated using duality quantum algorithm in future. 

Non-unitary YBE can also be investigated and 

simulated using duality quantum algorithm in future. 

    Novel physical systems such as parity-time-reversal 

quantum has many novel phenomena and properties 

that are valuable for investigations and applications, 

e.g., the quantum entanglements in the system, quantum 

brachistochrone problem etc. The optimization of the 

evolutionary time between two quantum states can have 

applications in quantum computing. The Yang-Baxter-

equation quantum system is full of physical meaning 

relating to quantum entanglements, topological 

quantum computing, and etc. Since the YBE is a whole 

equation, the two hand sides of it should be simulated 

simultaneously. Thus, the correlations and quantum 

entanglements of the two hand sides of the YBE are 

enabled be investigated efficiently in future.  

    Another future scope is that it is possible to 

investigate combinations of different non-Hermitian 

quantum systems. For example, we intend to find a 

YBE with PT-symmetry and simulate the non-unitary 

operators in the equation. On one hand, it will extend 

both the theories of PT-symmetric quantum mechanics 

and the Yang-Baxter equation. On the other hand, it 

would be a new application of the duality quantum 

algorithm, showing the strong ability of quantum 

computers.   

    In all, we believe more and more novel quantum 

systems can be investigate and simulated using duality 

quantum algorithm, and more novel phenomena will be 

revealed. 
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